科目: 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊BC延長線上一點(diǎn),連接AE,交CD于點(diǎn)F,G是AF的中點(diǎn),再連接DG、DE,且DE=DG.
(1)求證:∠DEA=2∠AEB;
(2)若BC=2AB,求∠AED的度數(shù)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于A,B兩點(diǎn),P是弧上一點(diǎn)(不與A,B重合),連接OP,設(shè)∠POB=α,則點(diǎn)P的坐標(biāo)是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會(huì)主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識(shí)競賽活動(dòng),成績分為A、B、C、D四個(gè)等級(jí),并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級(jí)A為優(yōu)秀,求該班的優(yōu)秀率.
【答案】(1)60;(2)補(bǔ)圖見解析;(3)108°;(4)5%.
【解析】(1)用B等人數(shù)除以其所占的百分比即可得到總?cè)藬?shù);
(2)用求得的總?cè)藬?shù)乘以C等所占的百分比即可得到C等的人數(shù),總?cè)藬?shù)減去A、C等的人數(shù)即可求得D等的人數(shù);
(3)用D等的人數(shù)除以總?cè)藬?shù)乘以360°即可得到答案;
(4)用A等的人數(shù)除以總?cè)藬?shù)乘以100%即可得到答案. 解答:
解:(1)30÷50%=60(人)
∴八年級(jí)一共有60人。
(2)等級(jí)為“C”的人數(shù)為60×15%=9(人).
等級(jí)為“D”的人數(shù)為603309=18(人).
補(bǔ)全折線統(tǒng)計(jì)圖如下。
(3)等極為“D”的部分所占圓心角的度數(shù)為 ×360°=108°,
故答案為:108°.
(4)該班的優(yōu)秀率×100%=5%.
∴該班的優(yōu)秀率為5%.
點(diǎn)睛:本題考查統(tǒng)計(jì)相關(guān)知識(shí).利用拆線圖與扇形圖得出相關(guān)信息是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
25
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(3,0),C(0,3)三點(diǎn),直線L是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)設(shè)P點(diǎn)是直線L上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,將△ABD沿AD折疊得到△AED,點(diǎn)E落在CD上,∠B=50°,∠C=30°.
(1)填空:∠BAD= 度;
(2)求∠CAE的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇期間,我國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議.某工廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共6萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于4200萬元,則至少銷管甲種商品多少萬件?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD的一個(gè)內(nèi)角是60,將它繞對(duì)角線的交點(diǎn)O順時(shí)針旋轉(zhuǎn)90后得到菱形A′B′C′D′.旋轉(zhuǎn)前后兩菱形重疊部分多邊形的周長為,則菱形ABCD的邊長為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AE∥BF,∠A=60°,點(diǎn)P為射線AE上任意一點(diǎn)(不與點(diǎn)A重合),BC,BD分別平分∠ABP和∠PBF,交射線AE于點(diǎn)C,點(diǎn)D.
(1)圖中∠CBD= °;
(2)當(dāng)∠ACB=∠ABD時(shí),∠ABC= °;
(3)隨點(diǎn)P位置的變化,圖中∠APB與∠ADB之間的數(shù)量關(guān)系始終為 ,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點(diǎn)40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
試題分析:延長AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H,在Rt△BCF中利用坡度的定義求得CF的長,則DF即可求得,然后在直角△AEH中利用三角函數(shù)求得AF的長,進(jìn)而求得AB的長.
試題解析:延長AB交直線DC于點(diǎn)F,過點(diǎn)E作EH⊥AF,垂足為點(diǎn)H.
∵在Rt△BCF中, =i=1:,∴設(shè)BF=k,則CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大樓AB的高度約為33.3米.
考點(diǎn):1.解直角三角形的應(yīng)用-仰角俯角問題;2.解直角三角形的應(yīng)用-坡度坡角問題.
【題型】解答題
【結(jié)束】
24
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會(huì)主義核心價(jià)值觀、未成年人基本文明禮儀規(guī)范”的知識(shí)競賽活動(dòng),成績分為A、B、C、D四個(gè)等級(jí),并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級(jí)A為優(yōu)秀,求該班的優(yōu)秀率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com