科目: 來源: 題型:
【題目】為鼓勵居民節(jié)約用電,某市采用價格調控手段達到省電目的.該市電費收費標準如下表(按月結算) :
每月用電量/度 | 電價/(元/度) |
不超過度的部分 | 元/度 |
超過度且不超過度的部分 | 元/度 |
超過度的部分 | 元/度 |
解答下列問題:
(1)某居民月份用電量為度,請問該居民月應繳電費多少元?
(2)設某月的用電量為度,試寫出不同用電量范圍應繳的電費(用表示) .
(3)某居民月份繳電費元,求該居民月份的用電量.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A,B分別在x軸、y軸上,點O關于AB的對稱點C在第一象限,將△ABC沿x軸正方向平移k個單位得到△DEF(點B與E是對應點),點F落在雙曲線y=上,連結BE交該雙曲線于點G.∠BAO=60°,OA=2GE,則k的值為 ________ .
查看答案和解析>>
科目: 來源: 題型:
【題目】《代數(shù)學》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構造一個面積為x2的正方形,再以正方形的邊長為一邊向外構造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關于x的方程x2+6x+m=0時,構造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )
A.6B.3-3C.3-2D.3-
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內部,試猜想∠AOD和∠COE有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了解本校七年級學生數(shù)學學習情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為個等級:,并將統(tǒng)計結果繪制成兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題:
補全條形統(tǒng)計圖;
等級為等的所在扇形的圓心角是 度;
如果七年級共有學生名,請估算該年級學生中數(shù)學學習為等和等的共多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,若二次函數(shù)的圖象與x軸交于點A(-2,0),B(3,0)兩點,點A關于正比例函數(shù)的圖象的對稱點為C。
(1)求b、c的值;
(2)證明:點C 在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)的圖象于點D,連結AC,交正比例函數(shù)的圖象于點E,連結AD、CD。如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動,當其中一個到達終點時,另一個隨之停止運動,連結PQ、QE、PE,設運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC,若存在,求出t的值;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=x2-x+a與x軸交于點A,B,與y軸交于點C,其頂點在直線y=-2x上.
【1】求a的值;
【2】求A,B的坐標;
【3】以AC,CB為一組鄰邊作□ACBD,則點D關于x軸的對稱點D′ 是否在該拋物線上?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)過頂點的一條直線,.分別是直線上兩點,且.
(1)若直線經(jīng)過的內部,且在射線上,請解決下面兩個問題:
①如圖1,若,,
則 ; (填“”,“”或“”);
②如圖2,若,請?zhí)砑右粋關于與關系的條件 ,使①中的兩個結論仍然成立,并證明兩個結論成立.
(2)如圖3,若直線經(jīng)過的外部,,請?zhí)岢?/span>三條線段數(shù)量關系的合理猜想(不要求證明).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,點E是BC的中點,F(xiàn)是AB延長線上一點且FB=1.
(1)求經(jīng)過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com