科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.
①當△OPC為等腰三角形時,求點P的坐標;
②求△BOD 面積的最大值,并寫出此時點D的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:我們把對角線相等的四邊形叫做和美四邊形.
請舉出一種你所學過的特殊四邊形中是和美四邊形的例子.
如圖1,E,F,G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,已知四邊形EFGH是菱形,求證:四邊形ABCD是和美四邊形;
如圖2,四邊形ABCD是和美四邊形,對角線AC,BD相交于O,,E、F分別是AD、BC的中點,請?zhí)剿?/span>EF與AC之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AE=ED=2,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖
如圖1,四邊形ABCD和四邊形BCMD都是菱形,
(1)求證:∠M=60°
(2)如圖2,點E在邊AD上,點F在邊CM上,連接EF交CD于點H,若AE=MF,求證:EH=HF;
(3)如圖3,在第(2)小題的條件下,連接BH,若EF⊥CM,AB=3,求BH的長
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=kx﹣2的圖象與反比例函數(shù)的圖象交于A、B兩點,過A作AC⊥x軸于點C.已知cos∠AOC=,OA=.
(1)求反比例函數(shù)及直線AB的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一只甲蟲在 5×5 的方格(每小格邊長為 1)上沿著網(wǎng)格線運動.它從 A處出發(fā)去看望 B、C、D 處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從 A 到 B 記為:A→B(+1,+4),從 B 到 A 記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→C( , ),C→D ( , );
(2)若這只甲蟲的行走路線為 A→B→C→D,請計算該甲蟲走過的最少路程;
(3)若這只甲蟲從 A 處去甲蟲 P 處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出 P 的位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC=8cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a,其它條件不變,你能猜想MN的長度嗎?寫出你的結論并說明理由;
(3)若點C在線段AB的延長線上,且滿足AC-BC=b,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形并寫出你的結論(不必說明理由).
查看答案和解析>>
科目: 來源: 題型:
【題目】我校4月份舉辦了教職工羽毛球賽,本次比賽共分三個項目:男雙、女雙和混雙.比賽規(guī)定參賽男教師只能在男雙或混雙中選報一項,參賽女教師只能在女雙或混雙中選報一項,現(xiàn)將參賽人數(shù)和各項的參賽隊數(shù)(兩人組成一隊)繪制成了如下不完整的統(tǒng)計圖:
(1)本次比賽共有_____名參賽教師,并補全條形統(tǒng)計圖;
(2)已知男雙冠軍分別是音樂教師和體育教師,女雙冠軍都是數(shù)學教師,混雙冠軍分別是數(shù)學男教師和美術女教師.暑假期問市教委將舉辦全市中小學教師羽毛球比賽,比賽規(guī)定:每所學校的參賽人數(shù)為兩人,且參賽教師不得屬于同一學科.所以學校決定:從三支冠軍隊伍中的數(shù)學教師中隨機選取一人,再從其他教師中選取一人參加比賽.請用列表法或畫樹狀圖的方法求出所選兩位教師恰好搭檔參加混雙項目的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設先發(fā)車輛行駛的時間為x小時,兩車之間的距離為y千米,圖中的折線表示y與x之間的函數(shù)關系.當兩車之間的距離首次為300千米時,經(jīng)過_____小時后,它們之間的距離再次為300千米.
查看答案和解析>>
科目: 來源: 題型:
【題目】某蛋糕店為了吸引顧客,在A、B兩種蛋糕中,輪流降低其中一種蛋糕價格,這樣形成兩種盈利模式,模式一:A種蛋糕利潤每盒8元,B種蛋糕利潤每盒15元;模式二:A種蛋糕利潤每盒14元,B種蛋糕利潤每盒11元每天限定銷售A、B兩種蛋糕共40盒,且都能售完,設每天銷售A種蛋糕x盒
(1)設按模式一銷售A、B兩種蛋糕所獲利潤為y1元,按模式二銷售A、B兩種蛋糕所獲利潤為y2元,分別求出y1、y2關于x的函數(shù)解析式;
(2)在同一個坐標系內(nèi)分別畫出(1)題中的兩個函數(shù)的圖象;
(3)若y始終表示y1、y2中較大的值,請問y是否為x的函數(shù),并說說你的理由,并直接寫出y的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com