科目: 來源: 題型:
【題目】如圖1,直線AB∥CD,直線EF交AB于點(diǎn)E,交CD于點(diǎn)F,點(diǎn)G和點(diǎn)H分別是直線AB和CD上的動(dòng)點(diǎn),作直線GH,EI平分∠AEF,HI平分∠CHG,EI與HI交于點(diǎn)I.
(1)如圖,點(diǎn)G在點(diǎn)E的左側(cè),點(diǎn)H在點(diǎn)F的右側(cè),若∠AEF=70°,∠CHG=60°,求∠ETH的度數(shù).
(2)如圖,點(diǎn)G在點(diǎn)E的右側(cè),點(diǎn)H也在點(diǎn)F的右側(cè),若∠AEF=,∠CHG=β,其他條件不變,求∠ETH的度數(shù).
(3)如圖,點(diǎn)G在點(diǎn)E的右側(cè),點(diǎn)H也在點(diǎn)F的右側(cè),∠GHC的平分線HJ交∠KEG的平分線EJ于點(diǎn)J.其他條件不變,若∠AEF=,∠CHG=β,求∠EJH的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】綠色出行是相對環(huán)保的出行方式,通過碳減排和碳中和實(shí)現(xiàn)環(huán)境資源的可持續(xù)利用和交通可持續(xù)發(fā)展.汽車工業(yè)的發(fā)展為人類帶來了快捷和方便,但同時(shí),汽車的發(fā)展也引起了能源的消耗和空氣的污染.并且已成為全國各大城市的第一大污染源。實(shí)驗(yàn)中學(xué)為了解全校學(xué)生的交通方式,責(zé)成該校七年級(1班)的4位同學(xué)對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查,按“騎自行車”、“乘公交車”、“步行”、“乘私家車”、“其他方式”設(shè)置選項(xiàng).要求被調(diào)查的所有學(xué)生從中選一項(xiàng),并將調(diào)查結(jié)果繪制成了條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2.根據(jù)所提供的信息,解答下列問題.
(1)本次調(diào)查的人數(shù)共有___________人,扇形中步行的圓心角度度數(shù)為________.
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該校共有學(xué)生3000人,則全校步行的學(xué)生大約有多少人數(shù)?
(4)根據(jù)調(diào)查結(jié)果對學(xué)生的環(huán)保出行提一條合理化的建議.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,⊙O外的一點(diǎn)D 在直線AB上.
(1)若AC=,OB=BD.
①求證:CD是⊙O的切線.
②陰影部分的面積是 .(結(jié)果保留π)
(2)當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)時(shí),若CD是⊙O的切線,探究∠CDO與∠OAC的數(shù)量關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,5),B(-3,3),C(1,2),點(diǎn)P(m,n)是三角形ABC內(nèi)任意一點(diǎn),三角形經(jīng)過平移后得到三角形A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(m+6,n-2).
(1)直接寫出平移后點(diǎn)A1、B1、C1的坐標(biāo)分別為 .
(2)畫出三角形ABC平移后的三角形A1B1C1..
查看答案和解析>>
科目: 來源: 題型:
【題目】青島、大連兩個(gè)城市各有機(jī)床12臺(tái)和6臺(tái),現(xiàn)將這些機(jī)床運(yùn)往海南10臺(tái)和廈門8臺(tái),每臺(tái)費(fèi)用如表一:
問題1:如表二,假設(shè)從青島運(yùn)往海南臺(tái)機(jī)床,并且從青島、大連運(yùn)往海南機(jī)床共花費(fèi)36萬元,求青島運(yùn)往海南機(jī)床臺(tái)數(shù).
問題2:在問題1的基礎(chǔ)上,問從青島、大連運(yùn)往海南、廈門的總費(fèi)用為多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
查看答案和解析>>
科目: 來源: 題型:
【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時(shí)后,兩車相距多少千米?
(5)行駛多長時(shí)間后,A、B兩車相遇?
查看答案和解析>>
科目: 來源: 題型:
【題目】下面的圖象反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象回答下列問題:
(1)體育場離張強(qiáng)家_____千米;
(2)體育場離文具店_____千米,張強(qiáng)在文具店停留了_____分;
(3)張強(qiáng)從文具店回家的平均速度是________千米/分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com