科目: 來(lái)源: 題型:
【題目】若的度數(shù)是的度數(shù)的k倍,則規(guī)定是的k倍角.
(1)若∠M=21°17',則∠M的5倍角的度數(shù)為 ;
(2)如圖1,OB是∠AOC的平分線,OD是∠COE的平分線,若∠AOC=∠COE,請(qǐng)直接寫(xiě)出圖中∠AOB的所有3倍角;
(3)如圖2,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互為補(bǔ)角,求∠AOD的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】希臘數(shù)學(xué)家丟番圖(公元3-4世紀(jì))的墓碑上記載著: “他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長(zhǎng)起了細(xì)細(xì)的胡須;他結(jié)了婚,又度過(guò)了一生的七分之一;再過(guò)五年,他有了兒子,感到很幸福;可是兒子只活了他父親全部年齡的一半;兒子死后,他在極度悲痛中度過(guò)了四年,也與世長(zhǎng)辭了.”
根據(jù)以上信息,請(qǐng)你算出:
(1)丟番圖的壽命;
(2)丟番圖開(kāi)始當(dāng)爸爸時(shí)的年齡;
(3)兒子死時(shí)丟番圖的年齡.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖①,EF過(guò)點(diǎn)O且與AB,CD分別相交于點(diǎn)E、F,AC=6,△AEO的周長(zhǎng)為10,求CF+OF的值.
(2)如圖②,將平行四邊形ABCD(紙片)沿過(guò)對(duì)角線交點(diǎn)O的直線EF折疊,點(diǎn)A落在A1處,點(diǎn)B落在點(diǎn)B1處,設(shè)FB1交CD于點(diǎn)G,A1B1分別交CD、DE于點(diǎn)H、P,請(qǐng)?jiān)谡郫B后的圖形中找一條線段,使它與EP相等,并加以證明.
(3)如圖③,△ABO是等邊三角形,AB=1,點(diǎn)E在BC邊上,且BE=1,則2EC-2EO= 直接填結(jié)果.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車(chē),購(gòu)買(mǎi)的數(shù)量和所需費(fèi)用如下表所示:
(1)求A型和B型公交車(chē)的單價(jià):
(2)該公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車(chē)共10輛,已知每輛A型公交車(chē)年均載客量為60萬(wàn)人次,每輛B型公交車(chē)年均載客量為100萬(wàn)人次;公交公司該如何購(gòu)買(mǎi)這10輛公交車(chē),才能確保公交車(chē)的年均載客量的總和不少于670萬(wàn)人次,且所需費(fèi)用最省,并求出最省的費(fèi)用
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】八年級(jí)甲班和乙班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個(gè)球;將兩班選手的進(jìn)球數(shù)繪制成如下尚不完整的統(tǒng)計(jì)圖表:
(1)表格中b=_________.c=_________;并求a的值;
(2)如果要從這兩個(gè)班中選出一個(gè)班代表年級(jí)參加學(xué)校的投籃比賽,爭(zhēng)取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭(zhēng)取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷(xiāo)售一件A型號(hào)衣服可獲利18元,銷(xiāo)售一件B型號(hào)衣服可獲利30元,要使在這次銷(xiāo)售中獲利不少于699元,且A型號(hào)衣服不多于28件.
(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?
(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開(kāi)始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開(kāi)始下降,水溫y(℃)和通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過(guò)程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時(shí)間的關(guān)系如下圖所示,回答下列問(wèn)題:
(1)分別求出當(dāng)0≤x≤8和8<x≤a時(shí),y和x之間的關(guān)系式;
(2)求出圖中a的值;
(3)下表是該小學(xué)的作息時(shí)間,若同學(xué)們希望在上午第一節(jié)下課8:20時(shí)能喝到不超過(guò)40℃的開(kāi)水,已知第一節(jié)下課前無(wú)人接水,請(qǐng)直接寫(xiě)出生活委員應(yīng)該在什么時(shí)間或時(shí)間段接通飲水機(jī)電源.(不可以用上課時(shí)間接通飲水機(jī)電源)
時(shí)間 | 節(jié)次 | |
上 午 | 7:20 | 到校 |
7:45~8:20 | 第一節(jié) | |
8:30~9:05 | 第二節(jié) | |
… | … |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】字母m、n分別表示一個(gè)有理數(shù),且m≠n.現(xiàn)規(guī)定min{m,n}表示m、n中較小的數(shù),例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.據(jù)此解決下列問(wèn)題:
(1)min{﹣,﹣}= .
(2)若min{,2)=﹣1,求x的值;
(3)若min{2x﹣5,x+3}=﹣2,求x的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(規(guī)律探索)如圖所示的是由相同的小正方形組成的圖形,每個(gè)圖形的小正方形個(gè)數(shù)為Sn,n是正整數(shù).觀察下列圖形與等式之間的關(guān)系.
第一組:
第二組:
第三組:
(規(guī)律歸納)
(1)S7﹣S6= ;Sn﹣Sn﹣1= .
(2)S7+S6= ;Sn+Sn﹣1= .
(規(guī)律應(yīng)用)
(3)計(jì)算的結(jié)果為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com