科目: 來(lái)源: 題型:
【題目】甲、乙兩車分別從、兩地同時(shí)出發(fā),甲車勻速前往地,到達(dá)地后立即以另一速度按原路勻速返回到地; 乙車勻速前往地,設(shè)甲、乙兩車距地的路程為(千米),甲車行駛的時(shí)間為時(shí)), 與之間的函數(shù)圖象如圖所示
(1)甲車從地到地的速度是__________千米/時(shí),乙車的速度是__________千米/時(shí);
(2)求甲車從地到達(dá)地的行駛時(shí)間;
(3)求甲車返回時(shí)與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)求乙車到達(dá)地時(shí)甲車距地的路程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)與原點(diǎn)的距離相等.
(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;
(2)|b-1|+|a-1|=________;
(3)化簡(jiǎn):|a+b|+|a-c|-|b|+|b-c|.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖①,四邊形是正方形,點(diǎn)是邊的中點(diǎn), ,且交正方形的外角平分線于點(diǎn)請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖形的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖①后,很快發(fā)現(xiàn)這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(個(gè)直角三角形,一個(gè)鈍角三角形)考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M(如圖②),連接EM后嘗試著去證明就行了.隨即小強(qiáng)寫出了如下的證明過(guò)程:
證明:如圖②,取AB的中點(diǎn)M,連接EM.
∵
∴
又∵
∴
∵點(diǎn)E、M分別為正方形的邊BC和AB的中點(diǎn),
∴
∴是等腰直角三角形,
∴
又∵是正方形外角的平分線,
∴,∴
∴
∴,
∴
(2)探究2:小強(qiáng)繼續(xù)探索,如圖③,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立小強(qiáng)進(jìn)一步還想試試,如圖④,若把條件“點(diǎn)E是邊BC的中點(diǎn)”為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF仍然成立請(qǐng)你選擇圖③或圖④中的一種情況寫出證明過(guò)程給小強(qiáng)看.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)元,領(lǐng)帶每條定價(jià)元,廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
①西裝和領(lǐng)帶都按定價(jià)的付款;②買一套西裝送一條領(lǐng)帶。
現(xiàn)某客戶要到該服裝廠購(gòu)買西裝套,領(lǐng)帶條。
(1)若該客戶按方案①購(gòu)買,需付款多少元?(用含的代數(shù)式表示);
(2)若該客戶按方案②購(gòu)買,需付款多少元?(用含的代數(shù)式表示);
(3)若,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小明和小兵兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆?/span>
1次 | 2次 | 3次 | 4次 | 5次 | |
小明 | 10 | 14 | 13 | 12 | 13 |
小兵 | 11 | 11 | 15 | 14 | 11 |
根據(jù)以上信息,解決以下問題:
(1)小明成績(jī)的中位數(shù)是__________.
(2)小兵成績(jī)的平均數(shù)是__________.
(3)為了比較他倆誰(shuí)的成績(jī)更穩(wěn)定,老師利用方差公式計(jì)算出小明的方差如下(其中表示小明的平均成績(jī));
請(qǐng)你幫老師求出小兵的方差,并比較誰(shuí)的成績(jī)更穩(wěn)定。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問題情境)
如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒().
(綜合運(yùn)用)
(1)填空:
①、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.
②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.
③當(dāng)_________時(shí),、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.
(2)當(dāng)為何值時(shí),.
(3)若點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1是一個(gè)長(zhǎng)為、寬為的長(zhǎng)方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長(zhǎng)方形,然后按圖2方式拼成一個(gè)大正方形.
圖1 圖2
(1)圖2中大正方形的邊長(zhǎng)為 ;小正方形(陰影部分)的邊長(zhǎng)為 .(用含、的代數(shù)式表示)
(2)仔細(xì)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:所表示的圖形面積之間的相等關(guān)系,并選取適合,的數(shù)值加以驗(yàn)證.
(3)已知.則代數(shù)式的值為 .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,以點(diǎn)為圓心,長(zhǎng)為半徑畫弧交于點(diǎn),再分別以點(diǎn)為圓心,大于二分之一長(zhǎng)為半徑畫弧,兩弧交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接.
(1)四邊形是__________; (填矩形、菱形、正方形或無(wú)法確定)
(2)如圖,相交于點(diǎn),若四邊形的周長(zhǎng)為,求的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過(guò)20立方米時(shí),按2元/立方米計(jì)費(fèi);月用水量超過(guò)20立方米時(shí),其中的20立方米仍按2元/立方米收費(fèi),超過(guò)部分按2.6元/立方米計(jì)費(fèi).設(shè)每戶家庭用水量為x立方米時(shí),應(yīng)交水費(fèi)y元.
(1)當(dāng)時(shí),y= (用含x的代數(shù)式表示);
當(dāng)時(shí),y= (用含x的代數(shù)式表示);
(2)小明家第二季度交納水費(fèi)的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費(fèi)金額 | 30元 | 34元 | 47.8元 |
小明家這個(gè)季度共用水多少立方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com