科目: 來源: 題型:
【題目】由于各地霧霾天氣越來越嚴(yán)重,2018年春節(jié)前夕,安慶市政府號召市民,禁放煙花炮竹.學(xué)校向3000名學(xué)生發(fā)出“減少空氣污染,少放煙花爆竹”倡議書,并圍繞“A類:不放煙花爆竹;B類:少放煙花爆竹;C類:使用電子鞭炮;D類:不會(huì)減少煙花爆竹數(shù)量”四個(gè)選項(xiàng)進(jìn)行問卷調(diào)查(單選),并將對100名學(xué)生的調(diào)查結(jié)果繪制成統(tǒng)計(jì)圖(如圖所示).根據(jù)抽樣結(jié)果,請估計(jì)全!笆褂秒娮颖夼凇钡膶W(xué)生有( )
A. 900名 B. 1050名 C. 600名 D. 450名
【答案】D
【解析】分析:用全校學(xué)生的人數(shù)乘以“使用電子鞭炮”的百分比即可求出答案.
詳解:100名學(xué)生中“使用電子鞭炮”的學(xué)生有人,“使用電子鞭炮”的百分比為:
全校“使用電子鞭炮”的學(xué)生有:人.
故選D.
點(diǎn)睛:考查用樣本估計(jì)總體,從條形統(tǒng)計(jì)圖中得到“使用電子鞭炮”的學(xué)生人數(shù)是解題的關(guān)鍵.
【題型】單選題
【結(jié)束】
9
【題目】如圖,在□ABCD中,E、F分別為BC、AD的中點(diǎn),AE、CF分別交BD于點(diǎn)M、N,則四邊形 AMCN與□ABCD的面積比為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在□ABCD中,E、F分別為BC、AD的中點(diǎn),AE、CF分別交BD于點(diǎn)M、N,則四邊形 AMCN與□ABCD的面積比為( )
A. B. C. D.
【答案】B
【解析】分析:根據(jù)平行四邊形一頂點(diǎn)和對邊中點(diǎn)的連線一定三等分平行四邊形的一對角線,可得: 即可得出結(jié)論.
詳解:由題意可得:M、N為線段BD的三等分點(diǎn),
∴
故選B.
點(diǎn)睛:平行四邊形一頂點(diǎn)和對邊中點(diǎn)的連續(xù)一定三等分平行四邊形的一對角線.
【題型】單選題
【結(jié)束】
10
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),點(diǎn)M在線段AB上,記MO+MP最小值的平方為s,當(dāng)點(diǎn)P沿x軸正向從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A時(shí)(設(shè)點(diǎn)P的橫坐標(biāo)為x),s關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于數(shù)軸上的A,B,C三點(diǎn),給出如下定義:若其中一個(gè)點(diǎn)與其它兩個(gè)點(diǎn)的距離恰好滿足2倍的數(shù)量關(guān)系,則稱該點(diǎn)是其它兩個(gè)點(diǎn)的“聯(lián)盟點(diǎn)”.
例如數(shù)軸上點(diǎn)A,B,C所表示的數(shù)分別為1,3,4,此時(shí)點(diǎn)B是點(diǎn)A, C的“聯(lián)盟點(diǎn)”.
(1)若點(diǎn)A表示數(shù)-2, 點(diǎn)B表示的數(shù)2,下列各數(shù),0,4,6所對應(yīng)的點(diǎn)分別C1,C2 ,C3 ,C4,其中是點(diǎn)A,B的“聯(lián)盟點(diǎn)”的是 ;
(2)點(diǎn)A表示數(shù)-10, 點(diǎn)B表示的數(shù)30,P在為數(shù)軸上一個(gè)動(dòng)點(diǎn):
①若點(diǎn)P在點(diǎn)B的左側(cè),且點(diǎn)P是點(diǎn)A, B的“聯(lián)盟點(diǎn)”,求此時(shí)點(diǎn)P表示的數(shù);
②若點(diǎn)P在點(diǎn)B的右側(cè),點(diǎn)P,A, B中,有一個(gè)點(diǎn)恰好是其它兩個(gè)點(diǎn)的“聯(lián)盟點(diǎn)”,寫出此時(shí)點(diǎn)P表示的數(shù) .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時(shí)距地最遠(yuǎn);
(2)求收工時(shí)距地多遠(yuǎn)?
(3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費(fèi)多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:A是以BC為直徑的圓上的一點(diǎn),BE是⊙O的切線,CA的延長線與BE交于E點(diǎn),F(xiàn)是BE的中點(diǎn),延長AF,CB交于點(diǎn)P.
(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校初三(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | 9 | 0.18 |
三級蛙跳 | 12 | a |
一分鐘跳繩 | 8 | 0.16 |
投擲實(shí)心球 | b | 0.32 |
推鉛球 | 5 | 0.10 |
合計(jì) | 50 | 1 |
(1)求a,b的值;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生,為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,M是線段AB上一點(diǎn),AB=16cm,C,D兩點(diǎn)分別從M,B同時(shí)出發(fā),點(diǎn)C以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以3cm/s的速度向點(diǎn)M運(yùn)動(dòng)當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
(1)當(dāng)AM=6cm,點(diǎn)C,D運(yùn)動(dòng)了2s時(shí),求這時(shí)AC與MD的數(shù)量關(guān)系;
(2)若AM=6cm,請你求出點(diǎn)C,D運(yùn)動(dòng)多少s時(shí),點(diǎn)C,D的距離等于7cm;
(3)若點(diǎn)C,D運(yùn)動(dòng)時(shí),總有MD=3AC,求AM的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】小聰對本班全體同學(xué)的興趣愛好進(jìn)行了一次調(diào)查,根據(jù)采集到的數(shù)據(jù)繪制了如圖的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)該班學(xué)生共多少人;
(2)在圖1中,請你將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求愛好“書畫”的學(xué)生數(shù)占該班學(xué)生數(shù)的百分比;
(4)在圖2中,“音樂”部分所對應(yīng)的圓心角度數(shù)是多少.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=4,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com