科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為( ).
A. 1 B. C. 2 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】由幾個相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個數(shù).
(1)請在下面方格紙中分別畫出這個向何體的主視圖和左視圖.
(2)根據(jù)三視圖;這個組合幾何體的表面積為 _________ 個平方單位.(包括底面積)
(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個平方單位.(包括底面積)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在中,,,.點從點開始沿邊向點以的速度移動,同時點從點開始沿邊向點以的速度移動.當(dāng)一個點到達(dá)終點時另一點也隨之停止運動,設(shè)運動時間為秒,
求 秒后, 的面積等于
求 秒后,的長度等于
運動過程中,四邊形APQC的面積能否等于?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】七年級一班和二班各推選名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了個球,兩個班選手的進(jìn)球數(shù)統(tǒng)計如下表,請根據(jù)表中數(shù)據(jù)回答問題.
進(jìn)球數(shù)(個) | ||||||
一班人數(shù)(人) | ||||||
二班人數(shù)(人) |
填表;
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
一班 | 2.6 | |||
二班 | 7 | 7 | 7 |
如果要從這兩個班中選出一個班代表級部參加學(xué)校的投籃比賽,爭取奪得總進(jìn)球數(shù)團體第一名,你認(rèn)為應(yīng)該選擇哪個班?如果要爭取個人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個班?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)
(t>0).
(1)求線段AC的長.
(2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
(3)若邊EF所在直線與邊AC交于點Q,連結(jié)PQ,如圖2,直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,采用分階段計費的方法按月計算每戶家庭的水費:月用水量不超過20m3時,按2元/m3計算;月用水量超過20m3時,其中的20m3仍按2元/m3計算,超過部分按2.6元/m3計算.設(shè)某戶家庭月用水量xm3.
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | 21 |
(1)用含x的式子表示:
當(dāng)0≤x≤20時,水費為 元;
當(dāng)x>20時,水費為 元.
(2)小花家第二季度用水情況如上表,小花家這個季度共繳納水費多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】給下列證明過程填寫理由.
如圖,CD⊥AB于D,點F是BC上任意一點,EF⊥AB于E,∠1=∠2,求證:∠ACB=∠3.
請閱讀下面解答過程,并補全所有內(nèi)容.
解:∵CD⊥AB,EF⊥AB(已知)
∴∠BEF=∠BDC=90°( )
∴EF∥DC( )
∴∠2=________( )
又∵∠2=∠1(已知)
∴∠1=_______(等量代換)
∴DG∥BC( )
∴∠3=________( )
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下定義:如果⊙C的半徑為r,⊙C外一點P到⊙C的切線長小于或等于2r,那么點P叫做⊙C的“離心點”.
(1)當(dāng)⊙O的半徑為1時,
①在點P1(, ),P2(0,-2),P3(,0)中,⊙O的“離心點”是 ;
②點P(m,n)在直線上,且點P是⊙O的“離心點”,求點P橫坐標(biāo)m的取值范圍;
(2)⊙C的圓心C在y軸上,半徑為2,直線與x軸、y軸分別交于點A,B. 如果線段AB上的所有點都是⊙C的“離心點”,請直接寫出圓心C縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個點從數(shù)軸上的原點開始,先向右移動1個單位長度,再向左移動2個單位長度,再向右移動3個單位長度,再向左移動4個單位長度,……,移動2019次后,該點所對應(yīng)的數(shù)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(點A在點B的左邊),拋物線上另有一點C在第一象限,且使△OCA∽△OBC,
(1)求OC的長及的值;
(2)設(shè)直線BC與y軸交于P點,當(dāng)點C恰好在OP的垂直平分線上時,求直線BP和拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com