科目: 來源: 題型:
【題目】小英和小倩站在正方形的對角A,C兩點處,小英以2米/秒的速度走向點D處,途中位置記為P,小倩以3米/秒的速度走向點B處,途中位置記為Q,假設兩人同時出發(fā),已知正方形的邊長為8米,E在AB上,AE=6米,記三角形AEP的面積為S1平方米,三角形BEQ的面積為S2平方米,如圖所示.
(1)她們出發(fā)后幾秒時S1=S2;
(2)當S1+S2=15時,小倩距離點B處還有多遠?
查看答案和解析>>
科目: 來源: 題型:
【題目】試根據(jù)圖中信息,解答下列問題.
(1)一次性購買6根跳繩需_____元,一次性購買12根跳繩需______元;
(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】平行四邊形一邊長為12cm,那么它的兩條對角線的長度可以是( 。
A. 8cm和14cm B. 10cm 和14cm C. 18cm和20cm D. 10cm和34cm
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點A在數(shù)軸上對應的數(shù)為26,以原點O為圓心,OA為半徑作優(yōu)弧,使點B在O右下方,且tan∠AOB=,在優(yōu)弧上任取一點P,且能過P作直線l∥OB交數(shù)軸于點Q,設Q在數(shù)軸上對應的數(shù)為x,連接OP.
(1)若優(yōu)弧上一段的長為13π,求∠AOP的度數(shù)及x的值;
(2)求x的最小值,并指出此時直線l與所在圓的位置關系;
(3)若線段PQ的長為12.5,直接寫出這時x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,厘米,,厘米,點為的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時點在線段上由點向點運動.當一個點停止運動時,另一個點也隨之停止運動.
(1)用含有的代數(shù)式表示,則_______厘米;
(2)若點的運動速度與點的運動速度相等,經過秒后,與是否全等,請說明理由;
(3)若點的運動速度與點的運動速度不相等,那么當點的運動速度為多少時,能夠使與全等?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、D、B、E四點在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為響應黨中央號召,決定針對沿江兩種主要污染源:生活污水和沿江工廠污染物排放,分別用甲方案和乙方案進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值平均為0.3.第一年有40家工廠用乙方案治理.經過三年治理,境內沿江水質明顯改善.
(1)第一年40家工廠用乙方案治理一年降低的Q值為______;
(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都有增加,第三年新增的用乙方案.新治理的工廠數(shù)量是第二年新增的用乙方案新治理的工廠數(shù)量的1.5倍,第三年用乙方案治理所降低的Q值為57,設第二年新增的用乙方案新治理的工廠數(shù)量為m家,第三年新增的用乙方案新治理的工廠數(shù)量為n家.
①請列出關于m、n的方程組,并求解;
②該市生活污水用甲方案治理,第一年降低的Q值為20.5,從第二年起,每年所降低的Q值比上一年都增加a.若第三年用甲乙兩種方案治理所降低的Q值比第二年用甲乙兩種方案治理所降低的Q值大32,求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com