科目: 來源: 題型:
【題目】數(shù)學(xué)課上,老師讓學(xué)生尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.李明的作法如圖所示,作線段AB使AB=C,以AB為直徑作⊙O,以B為圓心,a為半徑作弧交⊙O于點C,連接AC,△ABC即為所求作的三角形,你認(rèn)為這種作法中判斷∠ACB是直角的依據(jù)是( 。
A. 90°的圓周角所對的弦是直徑 B. 直徑所對的圓周角是直角
C. 勾股定理的逆定理 D. 勾股定理
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()
A. AD∥BC B. ∠CBE=∠C C. ∠ABD=∠E D. AD=BC
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a,b為有理數(shù),且a,b不為0,則定義有理數(shù)對(a,b)的“真誠值”為d(a,b)=,如有理數(shù)對(3,2)的“真誠值”為d(3,2)=23﹣10=﹣2,有理數(shù)對(﹣2,5)的“真誠值”為d(﹣2,5)=(﹣2)5﹣10=﹣42.
(1)求有理數(shù)對(﹣3,2)與(1,2)的“真誠值”;
(2)求證:有理數(shù)對(a,b)與(b,a)的“真誠值”相等;
(3)若(a,2)的“真誠值”的絕對值為|d(a,2)|,若|d(a,2)|=6,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)如圖,在損矩形ABCD中,∠ABC=∠ADC=90°,則該損矩形的直徑是線段________.
(2)在損矩形ABCD內(nèi)是否存在點O,使得A,B,C,D四個點都在以點O為圓心的同一個圓上?如果存在,請指出點O的具體位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知⊙O是等邊三角形ABC的外接圓,P為劣弧BC上一點(點P與點B,C不重合).
(1)如果P是劣弧BC的中點,求證:PB+PC=PA;
(2)當(dāng)點P在劣弧BC上移動時,(1)中的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,數(shù)軸上每相鄰兩點的相距一個單位長度,點A、B、C、D是這些點中的四個,且對應(yīng)的位置如圖所示,它們對應(yīng)的數(shù)分別是a,b,c,d.
(1)當(dāng)ab=﹣1,則d= .
(2)若|d﹣2a|=7,求點C對應(yīng)的數(shù).
(3)若abcd<0,a+b>0,化簡|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,點D從點C出發(fā)沿CA方向以每秒2個單位長度的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長度的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t(t>0)秒,過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)當(dāng)t為何值時,△DEF是等邊三角形?說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?(請直接寫出t的值)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A,B,C,D是⊙O上的四個點.
(1)如圖①,若∠ADC=∠BCD=90°,AD=CD,求證:AC⊥BD;
(2)如圖②,若AC⊥BD,垂足為F,AB=2,DC=4,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運算:①當(dāng)n為奇數(shù)時,F(n)=3n+1;②當(dāng)n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進(jìn)行,例如,取n=24,則:若n=13,則第2018次“F”運算的結(jié)果是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】營養(yǎng)對促進(jìn)中學(xué)生機(jī)體健康具有重要意義.現(xiàn)對一份學(xué)生快餐進(jìn)行檢測,得到以下信息:
根據(jù)上述信息回答下面的問題:
(1)這份快餐中蛋白質(zhì)和脂肪的質(zhì)量共 克;
(2)分別求出這份快餐中脂肪、礦物質(zhì)的質(zhì)量;
(3)學(xué)生每餐膳食中主要營養(yǎng)成分“理想比”為:碳水化合物:脂肪:蛋白質(zhì)=8:1:9,同時三者含量為總質(zhì)量的90%.試判斷這份快餐中此三種成分所占百分比是否符合“理想比”?如果符合,直接寫出這份快餐中碳水化合物、脂肪、蛋白質(zhì)、礦物質(zhì)的質(zhì)量比;如果不符合,求出符合“理想比”的四種成分中脂肪、礦物質(zhì)的質(zhì)量(總質(zhì)量仍為300克).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com