科目: 來源: 題型:
【題目】正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.
問題出現(xiàn):(1)當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為 ;
題探究:(2)①當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為 ;
②當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;
問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM= .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上,折痕的另一端F在AD邊上且BG=10時.
(1)證明:EF=EG;
(2)求AF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.
(1)求證:DE是⊙O的切線;
(2)求EF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知長方形ABCD的兩個頂點A(2,﹣1),C(6,2),點M為y軸上一點,△MAB的面積為6.請解答下列問題:
(1)頂點B的坐標(biāo) ;
(2)連接BD,求BD的長;
(3)請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 第九次 | 第十次 | |
甲 | 7 | 10 | 8 | 10 | 9 | 9 | 10 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 9 | 9 | 10 | 8 | 10 | 7 | 10 |
(1)選手甲的成績的中位數(shù)是 分;選手乙的成績的眾數(shù)是 分;
(2)計算選手甲的平均成績和方差;
(3)已知選手乙的成績的方差是15,則成績較穩(wěn)定的是哪位選手?請直接寫出結(jié)果.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.
(1)求證:四邊形ABCD是菱形.
(2)若AC=8,AB=5,求ED的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛的體育項目”進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,四邊形ABCD是菱形,AB=AD.
求證:(1) AB=BC=CD=DA
(2) AC⊥DB
(3) ∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA
查看答案和解析>>
科目: 來源: 題型:
【題目】任丘市舉辦一場中學(xué)生乒乓球比賽,比賽的費用y(元)包括兩部分:一部分是租用比賽場地等固定不變的費用b(元),另一部分費用與參加比賽的人數(shù)(x)人成正比.當(dāng)x=20時,y=1600;當(dāng)x=30時,y=2000.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果承辦此次比賽的組委會共籌集;經(jīng)費6350元,那么這次比賽最多可邀請多少名運動員參賽?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com