科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x+a交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,點(diǎn)A的橫坐標(biāo)為﹣2.
(1)求拋物線的對(duì)稱軸和函數(shù)表達(dá)式.
(2)連結(jié)BC線段,BC上有一點(diǎn)D,過點(diǎn)D作x軸的平行線交拋物線于點(diǎn)E,F,若EF=6,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D是半圓O上一點(diǎn),C是的中點(diǎn),連結(jié)AC交BD于點(diǎn)E,連結(jié)AD,若BE=4DE,CE=6,則AB的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點(diǎn)C,連結(jié)BC交AD于點(diǎn)E,若DE=3,BC=8,則⊙O的半徑長為( )
A.B.5C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△COD.
(1)點(diǎn)C的坐標(biāo)是 ,線段AD的長等于 ;
(2)點(diǎn)M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點(diǎn)G,M,求拋物線的解析式;
(3)如果點(diǎn)E在y軸上,且位于點(diǎn)C的下方,點(diǎn)F在直線AC上,那么在(2)中的拋物線上是否存在點(diǎn)P,使得以C,E,F,P為頂點(diǎn)的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】正方形中,點(diǎn)分別在邊,上,且.
(1)將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到(如圖①),求證:;
(2)若直線與,的延長線分別交于點(diǎn)(如圖②),求證:;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段,,之間的數(shù)量關(guān)系 .(不要求書寫證明過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】武漢市霧霾天氣嚴(yán)重,環(huán)境治理已刻不容緩,武漢市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái),經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái),若供應(yīng)商規(guī)定這種空氣凈化器售價(jià)不低于330元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量(臺(tái))與售價(jià)(元/臺(tái))之間的函數(shù)關(guān)系式.
(2)當(dāng)售價(jià)(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤(元)最大?最大利潤是多少?
(3)當(dāng)售價(jià)(元/臺(tái))滿足什么條件時(shí),商場每月銷售這種空氣凈化器所獲得的利潤(元)不低于70000元?
查看答案和解析>>
科目: 來源: 題型:
【題目】一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護(hù)費(fèi) |
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com