【題目】若拋物線軸交于點,與軸正半軸交于、兩點,且,,則______.

【答案】

【解析】

由題意拋物線y=x2+bx+cy軸交于點A,令x=0,求出A點坐標,又與x軸的正半軸交于B、C兩點,判斷出c的符號,將其轉(zhuǎn)化為方程的兩個根,再根據(jù)SABC=3,求出b值.

∵拋物線y=x2+bx+cy軸交于點A,

x=0得:A0,c).

∵該拋物線的開口向上,且與x軸的正半軸交于B、C兩點,∴拋物線與y軸的交點在y軸的正半軸,∴c0,

設方程x2+bx+c=0的兩個根為x1,x2,∴x1+x2=b,x1x2=c

BC=2=|x1x2|

SABC=3,∴3,∴c=3

|x1x2|,∴4=b212,∴b2=16

x1+x2=b0,∴b0,∴b=4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】市面上販售的防曬產(chǎn)品標有防曬指數(shù),而其對抗紫外線的防護率算法為:防護率,其中

請回答下列問題:

1)廠商宣稱開發(fā)出防護率的產(chǎn)品,請問該產(chǎn)品的應標示為多少?

2)某防曬產(chǎn)品文宣內(nèi)容如圖所示.

請根據(jù)與防護率的轉(zhuǎn)換公式,判斷此文宣內(nèi)容是否合理,并詳細解釋或完整寫出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段,的中點,上一點,連接交于.

(1)如圖1,當中點時,求的值.

(2)如圖2,當,=時,求tan的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣x2x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過BC兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD、BD.設點M運動的時間為tt0),請解答下列問題:

1)求點A的坐標與直線l的表達式;

2)①請直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時t的值;

②求點M運動的過程中線段CD長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC,∠BAC90°,BC5,AC2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點D

1)求BD的長;

2)連接AD,求∠DAC的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中(如圖),拋物線y=ax2-4x軸的負半軸相交于點A,與y軸相交于點B,AB=2.P在拋物線上,線段APy軸的正半軸交于點C,線段BPx軸相交于點D,設點P的橫坐標為m.

1)求這條拋物線的解析式;

2)用含m的代數(shù)式表示線段CO的長;

3)當tanODC=時,求∠PAD的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線(其中、為常數(shù)且)與軸交于兩點,與軸交于點.

1)當時,求拋物線的對稱軸方程及頂點坐標;

2)填空:__________,點的坐標為____________.(以上結果均用含的式子表示);

3)連接,線段的垂直平分線交拋物線的對稱軸于點,軸上存在一點(異于點)使得.

①求點的坐標;

②點關于拋物線對稱軸的對稱點為點,試求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.

(1)證明:方程總有兩個不相等的實數(shù)根;

(2)設這個方程的兩個實數(shù)根為x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,.為邊的中點,以為頂點作,射線交腰于點,射線交腰于點,聯(lián)結.

1)求證:;

2)若是以為腰的等腰三角形,求的長;

3)若,求的長.

查看答案和解析>>

同步練習冊答案