已知f(x)=x3-2x2+x+6,則f(x)在點P(-1,2)處的切線與坐標軸圍成的三角形面積等于( 。
A、4
B、5
C、
25
4
D、
13
2
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:先對函數(shù)進行求導,求出在x=1處的導數(shù)值即為切線的斜率值,從而寫出切線方程,然后求出切線方程與兩坐標軸的交點可得三角形面積.
解答: 解:∵f(x)=x3-2x2+x+6,f′(x)=3x2-4x+1,
∴f′(-1)=8,
點P(-1,2)處的切線為:y=8x+10與坐標軸的交點為:(0,10),(-
5
4
,0)
S=
1
2
×
5
4
×10=
25
4

故選:C.
點評:本題主要考查導數(shù)的幾何意義,即函數(shù)在某點處的導數(shù)值等于該點的切線的斜率.屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x2-2x-3,x∈[0,b]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC的重心為G,O是△ABC所在平面上一點,
OA
=
a
,
OB
=
b
,
OC
=
c
,試用
a
,
b
,
c
表示
OG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-kx+1(k∈R).
(Ⅰ)若x軸是曲線f(x)=lnx-kx+1一條切線,求k的值;
(Ⅱ)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過直線4x-3y-12=0與x軸的交點,且傾斜角等于該直線傾斜角一半的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O為△ABC的外心,AB=6,AC=4,∠BAC為鈍角,M是邊BC的中點,則
AM
AO
=( 。
A、-10B、36C、16D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程為
x=2t-1
y=-4t-2
(t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=
2
1-cosθ

(Ⅰ)求證:曲線C2的直角坐標方程為y2-4x-4=0;
(Ⅱ)設M1是曲線C1上的點,M2是曲線C2上的點,求|M1M2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=8+
2n-7
2n
的最大值M,最小值m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù),是周期函數(shù)的為(  )
A、y=sin|x|
B、y=cos|x|
C、y=tan|x|
D、y=(x-1)0

查看答案和解析>>

同步練習冊答案