精英家教網 > 高中數學 > 題目詳情
在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分別是BA、BC的中點,G是AA1上一點,且AC1⊥EG.
(Ⅰ)確定點G的位置;
(Ⅱ)求直線AC1與平面EFG所成角θ的大。
解法一:(Ⅰ)以C為原點,分別以CB、CA、CC1為x軸、y軸、z軸建立空間直角坐標系,則F(1,0,0),E(1,1,0),A(0,2,0),C1(0,0,2),
AC1
=(0,-2,2)

設G(0,2,h),則
EG
=(-1,1,h)
.∵AC1⊥EG,∴
EG
AC1
=0

∴-1×0+1×(-2)+2h=0.∴h=1,即G是AA1的中點.
(Ⅱ)設
m
=(x,y,z)
是平面EFG的法向量,則
m
FE
,
m
EG

所以
0×x+1×y+0×z=0
-x+y+z=0.
平面EFG的一個法向量m=(1,0,1)
sinθ=
|
m
AC1
|
|
m
|•|
AC1
|
=
2
2
×2
2
=
1
2
,
θ=
π
6
,即AC1與平面EFG所成角θ為
π
6

解法二:(Ⅰ)取AC的中點D,連接DE、DG,則EDBC
∵BC⊥AC,∴ED⊥AC.
又CC1⊥平面ABC,而ED?平面ABC,∴CC1⊥ED.
∵CC1∩AC=C,∴ED⊥平面A1ACC1
又∵AC1⊥EG,∴AC1⊥DG.
連接A1C,∵AC1⊥A1C,∴A1CDG.
∵D是AC的中點,∴G是AA1的中點.
(Ⅱ)取CC1的中點M,連接GM、FM,則EFGM,
∴E、F、M、G共面.作C1H⊥FM,交FM的延長線于H,∵AC⊥平面BB1C1C,
C1H?平面BB1C1C,∴AC⊥G1H,又ACGM,∴GM⊥C1H.∵GM∩FM=M,
∴C1H⊥平面EFG,設AC1與MG相交于N點,所以∠C1NH為直線AC1與平面EFG所成角θ.
因為C1H=
2
2
,C1N=
2
,∴sinθ=
2
2
2
=
1
2
,∴θ=
π
6
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

在正四面體ABCD中,點E、F分別為BC、AD的中點,則AE與CF所成角的余弦值為( 。
A.-
2
3
B.
2
3
C.-
1
3
D.
1
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中E為AB的中點.
(1)求直線A1C1與平面A1B1CD所成角大;
(2)試確定直線BC1與平面EB1D的位置關系,并證明你的結論;
(3)證明:平面EB1D⊥平面B1CD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是 ______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖1,在等腰△ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點,CD=BE=
2
,O為BC的中點.將△ADE沿DE折起,得到如圖2所示的四棱錐A′-BCDE.若A′O⊥平面BCDE,則A′D與平面A′BC所成角的正弦值等于(  )
A.
2
3
B.
3
3
C.
2
2
D.
2
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,平面四邊形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,將△ABD沿對角線BD折起,得四面體ABCD,使得點A在平面BCD上的射影在線段BC上,設AD與平面BCD所成角為θ,則sinθ=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,點D為AB的中點.
1)求證:BC1面A1DC;
2)求棱AA1的長,使得A1C與面ABC1所成角的正弦值等于
2
15
30

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,棱柱ABC-AwBwCw中,AwA,AwB,AwC都與平面ABC所成的角相等,∠CAB=90°,AC=AB=AwB=a,D為BC上的點,且AwC平面ADBw.求:
(Ⅰ)AwC與平面ADBw的距離;
(Ⅱ)二面角Aw-AB-C的大;
(Ⅲ)ABw與平面ABC所成的角的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉至
A′CD,使點A'與點B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大;
(3)求異面直線A′C與BD所成的角的余弦值.

查看答案和解析>>

同步練習冊答案