如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至
A′CD,使點(diǎn)A'與點(diǎn)B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大;
(3)求異面直線A′C與BD所成的角的余弦值.
(本小題滿分12分)
解(1)∵CD⊥AB,∴CD⊥A′D,CD⊥DB,∴CD⊥平面A′BD,
∴CD⊥BA′.又在△A′DB中,A′D=1,DB=2,A′B=
3
,∴∠BA′D=90°,
即BA′⊥A′D,∴BA′⊥平面A′CD.-------------------------(4分)
(2)∵CD⊥DB,CD⊥A′D,∴∠BDA′是二面角
A′-CD-B的平面角.又Rt△A′BD中,A′D=1,BD=2,
∴∠A′DB=60°,即二面角A′-CD-B為60°.---------(8分)
(3)過A′作A′EBD,在平面A′BD中作DE⊥A′E于E,
連CE,則∠CA′E為A′C與BD所成角.
∵CD⊥平面A′BD,DE⊥A′E,∴A′E⊥CE.
∵EA′AB,∠A′DB=60°,∴∠DA′E=60°,又A′D=1,∠DEA′=90°,∴A′E=
1
2

又∵在Rt△ACB中,AC=
AD•AB
=
3
∴A′C=AC=
3

∴cos∠CA′E=
A′E
A′C
=
1
2
3
=
3
6
,即A′C與BD所成角的余弦值為
3
6
.---------(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分別是BA、BC的中點(diǎn),G是AA1上一點(diǎn),且AC1⊥EG.
(Ⅰ)確定點(diǎn)G的位置;
(Ⅱ)求直線AC1與平面EFG所成角θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正四棱錐P-ABCD中,側(cè)棱PA與底面ABCD所成的角的正切值為
6
2

(1)求側(cè)面PAD與底面ABCD所成的二面角的大;
(2)若E是PB的中點(diǎn),求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點(diǎn)F,使EF⊥側(cè)面PBC,若存在,試確定點(diǎn)F的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

E是二面角α---l---β的棱上一點(diǎn),EF?β,EF與l成45°角,與α成30°角,則該二面角的大小為(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,A(-2,3),B(3,-2),沿x軸把平面直角坐標(biāo)系折成120°的二面角后,則線段AB的長(zhǎng)度為( 。
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,側(cè)面PDC是邊長(zhǎng)2的正三角形且與底面ABCD垂直,底面ABCD是面積為2
3
的菱形,∠ADC為銳角.
(1)求證:PA⊥CD
(2)求二面角P-AB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
,AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD和ABEF都是邊長(zhǎng)為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON平面CBE.

(1)求角MON大。
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求二面角A1-BC-A的大;
(3)求CC1到平面A1AB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案