PA垂直于正方形ABCD所在平面,連接PB,PC,PD,AC,BD,則下列垂直關(guān)系正確的是( )
①面PAB⊥面PBC ②面PAB⊥面PAD
③面PAB⊥面PCD ④面PAB⊥面PAC
A.①② B.①③
C.②③ D.②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知△ABC的三邊長分別為AB=5,BC=4,AC=3,M是AB邊上的高,P是平面ABC外一點(diǎn).給出下列四個(gè)命題:
①若PA⊥平面ABC,則三棱錐P-ABC的四個(gè)面都是直角三角形;
②若PM⊥平面ABC,且M是AB邊的中點(diǎn),則有PA=PB=PC;
③若PC=5,PC⊥平面ABC,則△PCM面積的最小值為;
④若PC=5,P在平面ABC上的射影是△ABC的內(nèi)切圓的圓心,則點(diǎn)P到平面ABC的距離為.
其中正確命題的序號是________.(把你認(rèn)為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,正方體的底面與正四面體的底面在同一平面α上,且AB//CD,則直線EF與正方體的六個(gè)面所在的平面相交的平面?zhèn)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知兩條互不重合的直線m、n,兩個(gè)互不重合的平面α、β,給出下列命題:
①若m⊥α,n⊥β,且m⊥n,則α⊥β;②若m∥α,n∥β,且m∥n,則α∥β;③若m⊥α,n∥β,且m⊥n,則α⊥β;④若m⊥α,n∥β,且m∥n,則α∥β.
其中正確命題的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知α∥β,異面直線AB,CD和平面α,β分別交于A,B,C,D四點(diǎn),E,F,G,H分別是AB,BC,CD,DA的中點(diǎn).
求證:(1)E,F,G,H共面;
(2)平面EFGH∥平面α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知平面α,β和直線m,給出條件:①m∥α;②m⊥α;③mα;④α∥β.當(dāng)滿足條件________時(shí),有m⊥β.(填所選條件的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點(diǎn),當(dāng)點(diǎn)M滿足________時(shí),平面MBD⊥平面PCD.(只要填寫一個(gè)你認(rèn)為是正確的條件即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三棱錐O-ABC中,OA、OB、OC兩兩垂直,OC=1,OA=x,OB=y,若x+y=4,則三棱錐體積的最大值是( )
A. B.
C.1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com