在△ABC中,根據(jù)下列條件解三角形,則其中有兩個(gè)解的是( 。
A、b=10,A=45°,C=75°
B、a=7,b=5,A=80°
C、a=60,b=48,C=60°
D、a=14,b=16,A=45°
考點(diǎn):解三角形
專(zhuān)題:計(jì)算題,解三角形
分析:D由a,b及sinA的值,利用正弦定理求出sinB的值,由a小于b得到A小于B,可得出此時(shí)B有兩解,符合題意.
解答: 解:∵a=14,b=16,A=45°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
16×
2
2
14
=
4
2
7
2
2
,
∵a<b,∴45°=A<B,
∴B有兩解.
故選:B.
點(diǎn)評(píng):此題考查了正弦、余弦定理,三角形的邊角關(guān)系,以及三角形的內(nèi)角和定理,熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)拋物線(xiàn)y2=6x焦點(diǎn)的弦長(zhǎng)為12,則此弦所在直線(xiàn)的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-3)2+(y-4)2=3,直線(xiàn)l:x+y-1=0,過(guò)點(diǎn)M(3,4)作圓C關(guān)于直線(xiàn)l的對(duì)稱(chēng)圓C′的二切線(xiàn),且切點(diǎn)分別為A,B,則直線(xiàn)AB的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在非等腰△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足
2c-b
2b-c
=
cosB
cosC

(1)求角A的大;
(2)若a=4,求△ABC的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x≤1,命題q:
1
x
≥1,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a2=8,S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項(xiàng),按原來(lái)的順序排成一個(gè)新數(shù)列{tn},試求{tn}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)m、n滿(mǎn)足nm=m+n+8,則mn的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=2x2-2x+1,則f(-1)=(  )
A、3B、-3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

程序框圖如圖:如果上述程序運(yùn)行的結(jié)果為S=132,那么判斷框中實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案