1.執(zhí)行如圖所示的程序框圖,輸出的k值為(  )
A.3B.4C.5D.6

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的a,k的值,當(dāng)a=$\frac{3}{16}$時(shí)滿足條件a<$\frac{1}{4}$,退出循環(huán),輸出k的值為4.

解答 解:模擬執(zhí)行程序框圖,可得
k=0,a=3,q=$\frac{1}{2}$
a=$\frac{3}{2}$,k=1
不滿足條件a<$\frac{1}{4}$,a=$\frac{3}{4}$,k=2
不滿足條件a<$\frac{1}{4}$,a=$\frac{3}{8}$,k=3
不滿足條件a<$\frac{1}{4}$,a=$\frac{3}{16}$,k=4
滿足條件a<$\frac{1}{4}$,退出循環(huán),輸出k的值為4.
故選:B.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(2sinx,-1),$\overrightarrow{n}$=(sinx-$\sqrt{3}$cosx,-2),函數(shù)f(x)=($\overrightarrow{m}$-$\overrightarrow{n}$)•$\overrightarrow{m}$+t.
(Ⅰ)若f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上有三個(gè)零點(diǎn),求t的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a=4,△ABC的面積S=$\sqrt{3}$,若f(A)=2,且t=0,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2,將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐A-EFCB中,△AEF為等邊三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O為EF的中點(diǎn).
(Ⅰ)求證:AO⊥BE.
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ(cosθ+sinθ)=-2,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=t^2}\\{y=2\sqrt{2}t}\end{array}\right.$ (t為參數(shù)),則C1與C2交點(diǎn)的直角坐標(biāo)為(2,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)方法是:從裝有2個(gè)紅球A1,A2和1個(gè)白球B的甲箱與裝有2個(gè)紅球a1,a2和2個(gè)白球b1,b2的乙箱中,各隨機(jī)摸出1個(gè)球,若摸出的2個(gè)球都是紅球則中獎(jiǎng),否則不中獎(jiǎng).
(Ⅰ)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;
(Ⅱ)有人認(rèn)為:兩個(gè)箱子中的紅球比白球多,所以中獎(jiǎng)的概率大于不中獎(jiǎng)的概率,你認(rèn)為正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:
(1)若ab>cd,則$\sqrt{a}$+$\sqrt$>$\sqrt{c}$+$\sqrtnglz7r1$;
(2)$\sqrt{a}$+$\sqrt$>$\sqrt{c}$+$\sqrt3912m1q$是|a-b|<|c-d|的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A、B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)一噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為(  )
  甲乙  原料限額
 A(噸) 3 212
 B(噸) 12 8
A.12萬(wàn)元B.16萬(wàn)元C.17萬(wàn)元D.18萬(wàn)元

查看答案和解析>>

同步練習(xí)冊(cè)答案