【題目】在四棱錐中,平面平面,側(cè)面是邊長為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.

【答案】

【解析】∵平面SAB⊥平面SAD,平面SAB平面SAD=SA,側(cè)面SAB是邊長為的等邊三角形,設(shè)AB的中點(diǎn)為E,SA的中點(diǎn)為F,

BFSA,BF⊥平面SAD,BFAD,底面ABCD是矩形,∴AD⊥平面SABSE平面SAB,

ADSE,又SEABABAD=A,

SE⊥底面ABCD,作圖如下:

SAB是邊長為的等邊三角形,

.

又底面ABCD是矩形,且BC=4

∴矩形ABCD的對角線長為,

∴矩形ABCD的外接圓的半徑為.

設(shè)該四棱錐外接球的球心為O,半徑為R,O到底面的距離為h,

r2+h2=R2,7+h2=R2,R2=22+(SEh)2=4+(3h)2,

7+h2=4+(3h)2

h=1.

R2=7+h2=8,

∴該四棱錐外接球的表面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準(zhǔn)確地把握市場,做好產(chǎn)品生產(chǎn)計(jì)劃,對過去四年的數(shù)據(jù)進(jìn)行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如下表:

(1)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)根據(jù)散點(diǎn)圖選擇合適的回歸模型擬合的關(guān)系(不必說明理由);

(3)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量.

附注:參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個頂點(diǎn), , ,求:

1邊上的高所在直線的方程;

2的垂直平分線所在直線的方程;

3邊的中線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè),若有兩個極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg ,f(1)=0,且f(2)﹣f( )=lg2.
(1)求f(x)的表達(dá)式;
(2)若x∈(0,+∞)時(shí)方程f(x)=lgt有解,求實(shí)數(shù)t的取值范圍;
(3)若函數(shù)y=f(x)﹣lg(8x+m)的無零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,底面為正三角形, 底面, 的中點(diǎn).

(1)求證: 平面

(2)求證:平面平面;

3)在側(cè)棱上是否存在一點(diǎn)使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大。
(Ⅱ)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:4km以內(nèi)(含4km)10元,超過4km且不超過18km的部分1.2元/km,超過18km的部分1.8元/km,不計(jì)等待時(shí)間的費(fèi)用.
(1)如果某人乘車行駛了10km,他要付多少車費(fèi)?
(2)試建立車費(fèi)y(元)與行車?yán)锍蘹(km)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案