已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).
(Ⅰ)求異面直線CC1和AB的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
(Ⅰ); (Ⅱ).
解析試題分析:(Ⅰ) 在直三棱柱ABC-A1B1C1中, AC=BC=3,D為AB的中點(diǎn),易知CD⊥AB.又側(cè)棱垂直底面,從而有CC1⊥CD,即CD為異面直線CC1和AB的距離,計(jì)算其長(zhǎng)度即可;(Ⅱ)易證CD垂直于側(cè)面,從而CD⊥DA1,CD⊥DB1,故∠A1DB1為所求的二面角A1-CD-B1的平面角.再根據(jù)相關(guān)條件求出△A1DB1各邊,從而利用余弦定理求出所求角的余弦值即可.
試題解析:(Ⅰ)因AC=BC,D為AB的中點(diǎn),故CD⊥AB.
又直三棱柱中,CC1⊥面ABC,故CC1⊥CD,所以異面直線CC1和AB的距離為CD==.
5分
(Ⅱ)由CD⊥AB,CD⊥BB1,故CD⊥面A1ABB1,從而CD⊥DA1,CD⊥DB1,故∠A1DB1為所求的二面角A1-CD-B1的平面角. 8分
又CD⊥,AB1⊥A1C,所以AB1⊥平面,從而,都與互余,因此,所以∽,因此=,得.從而A1D==2,B1D=A1D=2,
所以在△A1DB1中,由余弦定理得. 12分
考點(diǎn):1.異面直線的距離;2.直線與平面垂直的判定與性質(zhì);3.二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖四棱錐中,底面是平行四邊形,平面,垂足為,在上且,,,是的中點(diǎn),四面體的體積為.
(1)求過(guò)點(diǎn)P,C,B,G四點(diǎn)的球的表面積;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使,若存在,確定點(diǎn)的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC的中點(diǎn).
(1)證明:PA//平面BGD;
(2)求直線DG與平面PAC所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在長(zhǎng)方體中,為線段中點(diǎn).
(1)求直線與直線所成的角的余弦值;
(2)若,求二面角的大;
(3)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,,,,,平面,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,面面,底面是直角梯形,側(cè)面是等腰直角三角形.且∥,,,.
(1)判斷與的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段上一點(diǎn),當(dāng)//平面時(shí),求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com