已知(1+x)n展開式中有連續(xù)三項(xiàng)的系數(shù)之比為3814,求展開式中系數(shù)最大的項(xiàng).

答案:
解析:

解:設(shè)此三項(xiàng)為第r,r+1,r+2項(xiàng),由已知得

∴ 展開式中系數(shù)最大的項(xiàng)為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
3
3x
+
x
)n
展開式中,所有二項(xiàng)式系數(shù)的和與其各項(xiàng)系數(shù)的和之比為
1
64
,則n等于( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+2
x
)n
展開式中,某一項(xiàng)的系數(shù)恰好是它的前一項(xiàng)系數(shù)的2倍,而等于它后一項(xiàng)系數(shù)的
5
6
.則該展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第
4、5
4、5
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知(1+x)n展開式中有連續(xù)三項(xiàng)的系數(shù)之比為3814,求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+x)n展開式的第五、六、七項(xiàng)系數(shù)成等差數(shù)列,求展開式中系數(shù)最大項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案