如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,ABCD,AD⊥DC,PD=AD=DC=2AB,則異面直線PA與BC所成角的余弦值為(  )
A.
15
5
B.
10
5
C.-
10
5
D.
10
4

以D為坐標原點,分別以DA,DC,DP為x,y,z軸正方向建立空間坐標系
設PD=AD=DC=2AB=2
則P(0,0,2),A(2,0,0),B(2,1,0),C(0,2,0)
PA
=(2,0,-2),
BC
=(-2,1,0)
設異面直線PA與BC所成角為θ
則θ=
|
PA
BC
|
|
PA
|•|
BC
|
=
4
2
2
5
=
10
5

故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科做)已知平面α面β,AB、CD為異面線段,AB?α,CD?β,且AB=a,CD=b,AB與CD所成的角為θ,平面γ面α,且平面γ與AC、BC、BD、AD分別相交于點M、N、P、Q.
(1)若a=b,求截面四邊形MNPQ的周長;
(2)求截面四邊形MNPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)證明:A1C⊥AB;
(2)設BC=AC=2,求三棱錐C-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D為AB的中點.
(1)求證:BC1⊥平面AB1C;
(2)求證:BC1平面A1CD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點.
(1)求證:平面PAB平面EFG;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明;
(3)證明平面EFG⊥平面PAD,并求點D到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四面體ABCD中,O、E分別為BD、BC的中點,且CA=CB=CD=BD=2,AB=AD=
2

(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點P為平行四邊形ABCD外一點,且PD⊥平面ABCD,M為PC中點.
(1)求證:AP平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中點.
(1)求證:CM平面PAD;
(2)求證:BC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,A-BCDE是一個四棱錐,AB⊥平面BCDE,且四邊形BCDE為矩形,則圖中互相垂直的平面共有( 。
A.4組B.5組C.6組D.7組

查看答案和解析>>

同步練習冊答案