如圖,點(diǎn)P為平行四邊形ABCD外一點(diǎn),且PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
(1)設(shè)AC∩BD=H,連接EH,
∵H為平行四邊形ABCD對角線的交點(diǎn),∴H為AC中點(diǎn),
又∵M(jìn)為PC中點(diǎn),∴MH為△PAC中位線,
可得MHPA,
MH?平面MBD,PA?平面MBD,
所以PA平面MBD.
(2)∵PD⊥平面ABCD,AD?平面ABCD,
∴PD⊥AD,
又∵AD⊥PB,PD∩PB=D,
∴AD⊥平面PDB,結(jié)合BD?平面PDB,得AD⊥BD
∵PD⊥BD,且PD、AD是平面PAD內(nèi)的相交直線
∴BD⊥平面PAD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(1)求證:直線BD1平面PAC;
(2)求證:平面PAC⊥平面BDD1;
(3)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是AB=2,BC=3的矩形,側(cè)面PAB是等邊三角形,且側(cè)面PAB⊥底面ABCD.
(Ⅰ)求證:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,ABCD,AD⊥DC,PD=AD=DC=2AB,則異面直線PA與BC所成角的余弦值為( 。
A.
15
5
B.
10
5
C.-
10
5
D.
10
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,F(xiàn)A⊥平面ABCD,EFBC,F(xiàn)A=2,AD=3,∠ADE=45°,點(diǎn)G是FA的中點(diǎn).
(1)求證:EG⊥平面CDE;
(2)在棱BC是否存在點(diǎn)M,使GM平面CDE,若存在,找出點(diǎn)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、A1A的中點(diǎn).
(Ⅰ)求cos<
BA1
,
CB1
>的值;
(Ⅱ)求證:BN⊥平面C1MN;
(Ⅲ)求點(diǎn)B1到平面C1MN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:AC⊥平面BB1C1C;
(2)在A1B1上是否存一點(diǎn)P,使得DP與平面BCB1與平面ACB1都平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,CDAB,AB=4,CD=1,點(diǎn)M在PB上,且MB=3PM,PB與平面ABC成30°角.
(1)求證:CM面PAD;
(2)求證:面PAB⊥面PAD;
(3)求點(diǎn)C到平面PAD的距離.

查看答案和解析>>

同步練習(xí)冊答案