已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率等于2,它的右準(zhǔn)線過拋物線y2=4x的焦點(diǎn),則雙曲線的方程為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率等于2,它的右準(zhǔn)線過拋物線y2=4x的焦點(diǎn),求出a,c,可得b,即可求出雙曲線的方程.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率等于2,它的右準(zhǔn)線過拋物線y2=4x的焦點(diǎn),
c
a
=2,
a2
c
=1,
∴a=2,c=4,
∴b=2
3
,
∴雙曲線的方程為
x2
4
-
y2
12
=1

故答案為:
x2
4
-
y2
12
=1
點(diǎn)評(píng):本題主要考查了雙曲線的標(biāo)準(zhǔn)方程、圓錐曲線的共同特征,解答關(guān)鍵是對(duì)于圓錐曲線的共同特征的理解與應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D為側(cè)棱CC1的中點(diǎn),E為A1B1的中點(diǎn).
(1)求證:AB⊥DE;
(2)求直線A1B1到平面DAB的距離;
(3)求二面角A-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a.
(1)若對(duì)任意的x∈[1,2],f′(x)>a2恒成立,求a的取值范圍;
(2)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,求g(a)=x13+x23+a3的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在花園小區(qū)內(nèi)有一塊三邊長(zhǎng)分別為3米、4米、5米的三角形綠化帶,有一只小狗在其內(nèi)部玩耍,若不考慮小狗的大小,則在任意指定的某一時(shí)刻,小狗與三角形三個(gè)頂點(diǎn)的距離均超過1米的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四邊形ABCD中,AB∥CD,AB=2CD,M,N分別為CD、BC的中點(diǎn),若
AB
AM
AN
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑過點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)D,若AB=BC=2,則CD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
3
5
,且角α是第二象限的角,則sinα=
 
;tan(π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的反函數(shù)是f-1(x)=1+x2(x<0),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3f(x)+5f( 
1
x
)=
2
x
 +1
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案