在四邊形ABCD中,AB∥CD,AB=2CD,M,N分別為CD、BC的中點(diǎn),若
AB
AM
AN
,則λ+μ=
 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:如圖所示,連接MN并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.由于AB∥CD,AB=2CD,M,N分別為CD、BC的中點(diǎn),可得
MN
NE
=
CN
NB
=
MC
EB
=1,N是線段ME的中點(diǎn),MC=EB=
1
4
AB
.可得
AN
=
1
2
AM
+
1
2
AE
,
AB
=-
4
5
AM
+
8
5
AN
.與
AB
AM
AN
比較即可得出.
解答: 解:如圖所示,連接MN并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
∵AB∥CD,AB=2CD,M,N分別為CD、BC的中點(diǎn),
MN
NE
=
CN
NB
=
MC
EB
=1,
∴N是線段ME的中點(diǎn),MC=EB=
1
4
AB

AN
=
1
2
AM
+
1
2
AE
=
1
2
AM
+
5
8
AB
,
化為
AB
=-
4
5
AM
+
8
5
AN

AB
AM
AN
,
∴λ+μ=-
4
5
+
8
5
=
4
5

故答案為:
4
5
點(diǎn)評(píng):本題考查了向量的平行四邊形法則、向量共面定理,考查了輔助線的作法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1+a3是a2與a4的等差中項(xiàng),且以a3-2,a3,a3+2為邊長(zhǎng)的三角形是直角三角形.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an+n,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“遼寧艦”是中國(guó)第一艘航母,為保證航母的動(dòng)力安全性,擬增加運(yùn)用某項(xiàng)新技術(shù),該項(xiàng)新技術(shù)要進(jìn)入試用階段前必須對(duì)其中的三項(xiàng)不同指標(biāo)甲、乙、丙進(jìn)行量化檢測(cè),已知各項(xiàng)指標(biāo)檢測(cè)結(jié)果互不影響,且指標(biāo)甲、乙、丙檢測(cè)合格的概率分別為
3
4
、
2
3
、
1
2
.記指標(biāo)甲、乙、丙合格分別得4分、2分、4分,某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)得0分.
(Ⅰ)求該項(xiàng)新技術(shù)量化得分不低于8分的概率;
(Ⅱ)記該項(xiàng)新技術(shù)的三項(xiàng)指標(biāo)甲、乙、丙量化檢測(cè)得分之和為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為雙曲線
x2
3
-y2=1虛軸的一個(gè)端點(diǎn),Q為雙曲線上的一個(gè)動(dòng)點(diǎn),則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[x]表示x的整數(shù)部分,即[x]是不超過(guò)x的最大整數(shù),則[log21]+[log22]+[log23]+[log24]+…+[log232]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率等于2,它的右準(zhǔn)線過(guò)拋物線y2=4x的焦點(diǎn),則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校400名學(xué)生今年高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖如圖,則這400名學(xué)生中,分?jǐn)?shù)在[90,110)之間的有
 
名,根據(jù)此頻率分布直方圖,這400名學(xué)生今年數(shù)學(xué)平均分估計(jì)值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,點(diǎn)D為BC邊的中點(diǎn),過(guò)點(diǎn)D的直線分別交直線AB的延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F,若
AB
=m
AE
AC
=n
AF
,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公比為
2
的等比例,則
a3+a4+a5
a1+a2+a3
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案