已知,內(nèi)有一動(dòng)點(diǎn)P,MN,且四邊形PMON的面積等于4,今以O為原點(diǎn),的平分線為極軸(如圖),求動(dòng)點(diǎn)P的軌跡方程。
設(shè)P點(diǎn)坐標(biāo)為(,0),
    ∴,,
    故四邊形PMON的面積
     
     
    ∴點(diǎn)極坐標(biāo)為方程,
    若化為直角坐標(biāo)方程即是雙曲線右支。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為F1、F2,短軸端點(diǎn)分別為A、B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形
(I)求橢圓的方程;
(II)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足,連結(jié)CM交橢圓于P,證明為定值(O為坐標(biāo)原點(diǎn));
(III)在(II)的條件下,試問(wèn)在x軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使以線段MP為直徑的圓恒過(guò)直線DP、MQ的交點(diǎn),若存在,求出Q的坐標(biāo),若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
   如圖,橢圓的一個(gè)焦點(diǎn)是F(1,0),O為坐標(biāo)原點(diǎn)。
              
(Ⅰ)已知橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng),值有,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)點(diǎn)A(1,-1),B(-1,1)且圓心在直線x+y-2=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線、兩點(diǎn),試問(wèn):在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

 內(nèi)有一點(diǎn),AB為過(guò)點(diǎn)且傾斜角為α的弦,
(1) 當(dāng)時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)平分時(shí),寫(xiě)出直線AB 的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,所在的平面和四邊形所在的平面垂直,且,,,,則點(diǎn)在平面內(nèi)的軌跡是 (   )
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的方程為, 直線通過(guò)其右焦點(diǎn)F2,且與雙曲線的右支交于A、B兩點(diǎn),將A、B與雙曲線的左焦點(diǎn)F1連結(jié)起來(lái),求|F1A|·|F1B|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是(  )
A.1B.-1C.-2或-1D.-2或1

查看答案和解析>>

同步練習(xí)冊(cè)答案