已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開口向下且對稱軸為x=3的拋物線,試比較大。
(1)f(6)與f(4)

(1) f(6)<f(4);(2)

解析試題分析:
思路分析: (1)結(jié)合y=f(x)的圖像開口向下,及對稱軸是x=3,得到f(x)的減區(qū)間,比較大小。
(2)結(jié)合y=f(x)的圖像開口向下,及對稱軸是x=3,得到f(x)的減區(qū)間,比較大小。
解  (1)∵y=f(x)的圖像開口向下,且對稱軸是x=3,∴x≥3時,f(x)為減函數(shù),又6>4>3,∴f(6)<f(4)
時為減函數(shù).

考點:二次函數(shù)的圖象和性質(zhì)
點評:簡單題,比較函數(shù)值的大小,往往利用函數(shù)的單調(diào)性。對二次函數(shù),一般要注意“開口方向,對稱軸位置,自變量取值距對稱軸遠(yuǎn)近”等。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且,若,恒成立.
(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若對所有恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以為首項的數(shù)列滿足:
(1)若,求證:;
(2)若,求使對任意正整數(shù)n都成立的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;
(Ⅱ)已知的部分函數(shù)值由下表給出,











 求證:
(Ⅲ)定義集合
請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對于任意的,總成立,求實數(shù)的取值范圍;
⑶ 設(shè)函數(shù). 過點作函數(shù)圖像的所有切線,令各切點的橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位設(shè)計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識,對于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時間內(nèi),在單位面積上通過的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時間內(nèi),在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量(結(jié)果用,表示);
(2)為使雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)已知函數(shù),其中a是實數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點,且x1<x2
(Ⅰ)指出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且x2<0,證明:x2﹣x1≥1;
(Ⅲ)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若存在,使得成立,求實數(shù)的取值范圍;
(2)解關(guān)于的不等式;
(3)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊答案