已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

(1)(2)

解析試題分析:(1)c=1     橢圓方程為
(2)   
考點:橢圓的方程以及性質(zhì)
點評:解決的關(guān)鍵是對于橢圓的性質(zhì)的熟練運用,以及定義和解三角形的綜合運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線交橢圓、兩點,試問:在坐標平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點,與軌跡相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的兩個焦點為的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點為,經(jīng)過點的動直線交拋物線于點,.
(1)求拋物線的方程;
(2)若(為坐標原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準線上的一點,直線的斜率分別為.求證:
為定值時,也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線  在點  處的切線  平行直線,且點在第三象限.
(1)求的坐標;
(2)若直線  , 且  也過切點 ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心在坐標原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標); 若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案