【題目】某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機(jī)會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個(gè)不透明口袋中裝有編號分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次。ㄈ5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.
(1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學(xué)期望;
(2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎機(jī)會,求他獲得的獎金恰好為60元的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程是(t為參數(shù)),以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為.
(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)由直線l上的點(diǎn)向圓C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).
(1)證明:AP∥平面EBD;
(2)證明:BE⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作圓的切線,切點(diǎn)分別為,直線與軸交于點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識,某校開展了“疫情防護(hù)”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com