在橢圓上找一點,使這一點到直線的距離為最小,并求最小值。
橢圓的參數(shù)方程的運用,來研究點到直線的距離公式的運用。

試題分析:解:設橢圓的參數(shù)方程為,      3分
      7分
    10分
時,,此時所求點為   .12分
法2:設直線x-2y+m=0利用方程組也可求解。
點評:考查了點到直線的距離公式的運用,以及橢圓參數(shù)方程的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在坐標原點焦點在軸上的橢圓C,其長軸長等于4,離心率為
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是過拋物線焦點的弦,,則中點的橫坐標是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C以拋物線的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若分別為橢圓的左右焦點,求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點AB,AB中點為R,直線OR (O為坐標原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設,且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動直線恒過點與拋物線交于AB兩點,與軸交于C點,請你觀察并判斷:在線段MAMB,MCAB中,哪三條線段的長總能構成等比數(shù)列?說明你的結論并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知過拋物線y2 =2px(p>0)的焦點F的直線x-my+m=0與拋物線交于A,B兩點,且△OAB(O為坐標原點)的面積為2,則m6+ m4的值為(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標原點,OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.

查看答案和解析>>

同步練習冊答案