已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0
(1)令ω=1,判斷函數(shù)F(x)=f(x)+f(x+)的奇偶性,并說(shuō)明理由;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,對(duì)任意a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值.
【答案】分析:(1)特值法:ω=1時(shí),寫出f(x)、F(x),求出F()、F(-),結(jié)合函數(shù)奇偶性的定義可作出正確判斷;
(2)根據(jù)圖象平移變換求出g(x),令g(x)=0可得g(x)可能的零點(diǎn),而[a,a+10π]恰含10個(gè)周期,分a是零點(diǎn),a不是零點(diǎn)兩種情況討論,結(jié)合圖象可得g(x)在[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值;
解答:解:(1)f(x)=2sinx,
F(x)=f(x)+f(x+)=2sinx+2sin(x+)=2(sinx+cosx),
F()=2,F(xiàn)(-)=0,F(xiàn)(-)≠F(),F(xiàn)(-)≠-F(),
所以,F(xiàn)(x)既不是奇函數(shù),也不是偶函數(shù).
(2)f(x)=2sin2x,
將y=f(x)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位后得到y(tǒng)=2sin2(x+)+1的圖象,所以g(x)=2sin2(x+)+1.
令g(x)=0,得x=kπ+或x=kπ+(k∈z),
因?yàn)閇a,a+10π]恰含10個(gè)周期,所以,當(dāng)a是零點(diǎn)時(shí),在[a,a+10π]上零點(diǎn)個(gè)數(shù)21,
當(dāng)a不是零點(diǎn)時(shí),a+kπ(k∈z)也都不是零點(diǎn),區(qū)間[a+kπ,a+(k+1)π]上恰有兩個(gè)零點(diǎn),故在[a,a+10π]上有20個(gè)零點(diǎn).
綜上,y=g(x)在[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值為21或20.
點(diǎn)評(píng):本題考查函數(shù)y=Asin(ωx+φ)的圖象變換、函數(shù)的奇偶性、根的存在性及根的個(gè)數(shù)的判斷,考查數(shù)形結(jié)合思想,結(jié)合圖象分析是解決(2)問(wèn)的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案