分析 由題意可得,θ的終邊在第二象限,或角θ的終邊在第四象限.利用任意角的三角函數(shù)的定義,分類討論,求得sinθ和cosθ的值,可得3sinθ+cosθ的值.
解答 解:根據(jù)角θ的終邊在直線y=-2x上,可得角θ的終邊在第二象限,或角θ的終邊在第四象限.
當角θ的終邊在第二象限時,在它的終邊上任意取一點P(1,-2),則x=-1,y=2,r=|OP|=$\sqrt{5}$,
此時,cosθ=$\frac{x}{r}$=-$\frac{1}{\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$,sinθ=$\frac{y}{r}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,3sinθ+cosθ=$\frac{6\sqrt{5}}{5}$-$\frac{\sqrt{5}}{5}$=$\sqrt{5}$.
當角θ的終邊在第四象限時,在它的終邊上任意取一點P(-1,2),則x=1,y=-2,r=|OP|=$\sqrt{5}$,
此時,cosθ=$\frac{x}{r}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,sinθ=$\frac{y}{r}$=-$\frac{2}{\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$,3sinθ+cosθ=-$\frac{6\sqrt{5}}{5}$+$\frac{\sqrt{5}}{5}$=-$\sqrt{5}$.
綜上可得,3sinθ+cosθ=±$\sqrt{5}$.
點評 本題主要考查任意角的三角函數(shù)的定義,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有不相等的模 | B. | 不共線 | ||
C. | 不可能都是零向量 | D. | 不可能都是單位向量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -16 | B. | 16 | C. | 0或16 | D. | 0或-16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com