【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)請畫出性別與休閑方式的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.10的前提下,認為休閑方式與性別有關(guān)?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中不正確的是( )
A. 函數(shù)圖象的對稱軸方程為
B. 函數(shù)的最大值為
C. 函數(shù)的圖象上存在點,使得在點處的切線與直線:平行
D. 方程的兩個不同的解分別為,,則最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】操場上有100個人排成一圈,按順時針方向依次標(biāo)為,,…,.主持人將編號為l,2,…,50的紀(jì)念品按照以下方式依次分發(fā)給眾人:先將第l號紀(jì)念品交給;然后順時針跳過1個人,將第2號紀(jì)念品交給;再順時針跳過2個人,將第3號紀(jì)念品交給,……第次順時針跳過個人,將第號紀(jì)念品交給,其中,,如此下去,直到紀(jì)念品發(fā)完為止.試求得到紀(jì)念品最多的人及其所得紀(jì)念品的編號.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成3組派去三地執(zhí)行公務(wù)(每地至少去1人),則不同的方案有( )種.
A.150B.180C.240D.300
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.
(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;
(2)求恰好得到分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.
表1
文本學(xué)習(xí)積分 | 1 | 2 | 3 | 4 | 5 |
概率 |
表2
視頻學(xué)習(xí)積分 | 2 | 4 | 6 |
概率 |
(1)現(xiàn)隨機抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C經(jīng)過伸縮變換得到曲線E,直線(t為參數(shù))與曲線E交于A,B兩點.
(1)設(shè)曲線C上任一點為,求的最小值;
(2)求出曲線E的直角坐標(biāo)方程,并求出直線l被曲線E截得的弦AB長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分) 由0,1,2,3,4,5這六個數(shù)字。
(1)能組成多少個無重復(fù)數(shù)字的四位數(shù)?
(2)能組成多少個無重復(fù)數(shù)字的四位偶數(shù)?
(3)能組成多少個無重復(fù)數(shù)字且被25個整除的四位數(shù)?
(4)組成無重復(fù)數(shù)字的四位數(shù)中比4032大的數(shù)有多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com