【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:

質(zhì)量指標(biāo)值m

m<185

185≤m<205

M≥205

等級(jí)

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查的數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)這種產(chǎn)品符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品的質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

【答案】
(1)解:根據(jù)抽樣調(diào)查數(shù)據(jù),一、二等品所占比例的估計(jì)值為

0.200+0.300+0.260+0.090+0.025=0.875,

由于該估計(jì)值小于0.92,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品

符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”;


(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5和0.125,

故在樣本中,一等品3件,二等品4件,三等品1件;

再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,一、二、三等品都有的情形有2種,

①一等品2件,二等品1件,三等品1件;

②一等品1件,二等品2件,三等品1件,

故所求的概率為P= = ;


(3)“質(zhì)量提升月”活動(dòng)前,該企業(yè)這種產(chǎn)品的質(zhì)量指標(biāo)值的均值約為

170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4;

“質(zhì)量提升月”活動(dòng)后,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),

則數(shù)學(xué)期望E(X)=218;

所以“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了

218﹣200.4=17.6.


【解析】(1)根據(jù)抽樣調(diào)查數(shù)據(jù)計(jì)算一、二等品所占比例的估計(jì)值,判斷該企業(yè)生產(chǎn)的這種產(chǎn)品是否符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”;(2)由頻率分布直方圖知一、二、三等品的頻率值,計(jì)算樣本中一等品、二等品、三等品的件數(shù),求出從這8件產(chǎn)品中隨機(jī)抽取4件,一、二、三等品都有的情形,計(jì)算所求的概率值;(3)計(jì)算“質(zhì)量提升月”活動(dòng)前、后產(chǎn)品質(zhì)量指標(biāo)值的均值,比較得出結(jié)論.
【考點(diǎn)精析】本題主要考查了頻率分布直方圖的相關(guān)知識(shí)點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為 ,求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3 (1﹣a)x2﹣3ax+1,a>0.
(1)試討論f(x)(x≥0)的單調(diào)性;
(2)證明:對(duì)于正數(shù)a,存在正數(shù)p,使得當(dāng)x∈[0,p]時(shí),有﹣1≤f(x)≤1;
(3)設(shè)(1)中的p的最大值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn , 且滿足Sn+Sn+1=3n2+2n,若對(duì)n∈N+ , an<an+1恒成立,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P是雙曲線 的右支上一點(diǎn),其左,右焦點(diǎn)分別為F1 , F2 , 直線PF1與以原點(diǎn)O為圓心,a為半徑的圓相切于A點(diǎn),線段PF1的垂直平分線恰好過點(diǎn)F2 , 則離心率的值為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n對(duì)任意的x>0恒成立,求實(shí)數(shù)n的最小值;
(2)若函數(shù)f(x)= ,求函數(shù)g(x)=f(x)+h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣a+lnx.
(Ⅰ)若a=1,求證:當(dāng)x>1時(shí),f(x)>2x﹣1;
(Ⅱ)若存在x0≥e,使f(x0)<2lnx0 , 求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDEF中,ABCD為直角梯形,AB∥CD,∠DAB=90°,四邊形ADEF為等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.

(1)求證:平面ABCD⊥平面ADEF;
(2)求直線CF與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個(gè)不同的根,則實(shí)數(shù)t的取值范圍為( 。
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案