【題目】已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn , 且滿足Sn+Sn+1=3n2+2n,若對(duì)n∈N+ , an<an+1恒成立,則m的取值范圍是 .
【答案】(﹣2, )
【解析】解:∵Sn+Sn+1=3n2+2n,
∴n=1時(shí),2a1+a2=5,解得a2=5﹣2m.
n≥2時(shí),Sn﹣1+Sn=3(n﹣1)2+2(n﹣1),
∴an+1+an=6n﹣1,∴an+an﹣1=6n﹣7,
∴an+1﹣an﹣1=6,
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,
a2k=5﹣2m+6(k﹣1)=6k﹣1﹣2m,
a2k﹣1=m+6(k﹣1)=6k+m﹣6.
∵對(duì)n∈N*,an<an+1恒成立,
∴n=2k﹣1時(shí),6k+m﹣6<6k﹣1﹣2m,解得m< .
n=2k時(shí),6k﹣1﹣2m<6(k+1)+m﹣6,解得:m>﹣2.
綜上可得m的取值范圍是:﹣2<m< .
故答案為:(﹣2, ).
本題必需要得出數(shù)列an的通項(xiàng)公式再結(jié)合不等式對(duì)n∈N+,an<an+1恒成立求出m的取值范圍,而數(shù)列an的通項(xiàng)公式的求解很顯然用到與之間的關(guān)系式以及數(shù)列的性質(zhì),從而得出an+1﹣an﹣1=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG;
(2)求直線GB與平面AEFG所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知sinA=13sinBsinC,cosA=13cosBcosC,則tanA+tanB+tanC的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[0,1]上的函數(shù)滿足:①f(0)=f(1)=0,②對(duì)于所有x,y∈[0,1]且x≠y有|f(x)﹣f(y)|< |x﹣y|.若當(dāng)所有的x,y∈[0,1]時(shí),|f(x)﹣f(y)|<k,則k的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:“存在x0∈[1,+∞),使得(log23) ≥1”,則下列說法正確的是( 。
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(﹣∞,1),都有(log23)x<1”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如表:
質(zhì)量指標(biāo)值m | m<185 | 185≤m<205 | M≥205 |
等級(jí) | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查的數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)這種產(chǎn)品符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品的質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量 ,則λ+μ的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩坐標(biāo)系中的單位長(zhǎng)度相同,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線 (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com