定點(diǎn)P不在△ABC所在平面內(nèi),過(guò)P作平面α,使△ABC的三個(gè)頂點(diǎn)到α的距離相等,這樣的平面共有
4
4
個(gè).
分析:利用線面、面面平行的性質(zhì)即可找出滿足題意的平面α.
解答:解:如圖所示:
①過(guò)點(diǎn)P作平面α∥平面ABC.則△ABC的三個(gè)頂點(diǎn)到α的距離相等;
②分別取線段AB、BC、CA的中點(diǎn),則三個(gè)平面PFD、PDE、PEF皆滿足題意.
綜上可知:滿足題意的平面α共有4個(gè).
故答案為4.
點(diǎn)評(píng):熟練掌握線面、面面平行的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在各棱長(zhǎng)均為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,∠A1AC=60°.
(Ⅰ)求側(cè)棱AA1與平面AB1C所成角的正弦值的大;
(Ⅱ)已知點(diǎn)D滿足
BD
=
BA
+
BC
,在直線AA1上是否存在點(diǎn)P,使DP∥平面AB1C?若存在,請(qǐng)確定點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點(diǎn),點(diǎn)P在直線A1B1上,且
A1P
A1B1
;
(Ⅰ)證明:無(wú)論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時(shí),直線PN與平面ABC所成的角θ最大?并求該角取最大值時(shí)的正切值;
(Ⅲ)是否存在點(diǎn)P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖組合體由直三棱柱ABC-A1B1C1與正三棱錐B-ACD組成,其中,AB⊥BC.它的正視圖、俯視圖、從左向右的側(cè)視圖的面積分別為2
2
+1,2
2
+1,1.
(Ⅰ)求直線CA1與平面ACD所成角的正弦;
(Ⅱ)在線段AC1上是否存在點(diǎn)P,使B1P⊥平面ACD.若存在,確定點(diǎn)P的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,放置在水平面上的組合體由直三棱柱ABC-A1B1C1與正三棱錐B-ACD組成,其中,AB⊥BC,AB=
2
,BB1=2.
(1)求直線CA1與平面ACD所成角的正弦值;
(2)在線段AC1上是否存在點(diǎn)P,使B1P⊥平面ACD?若存在,確定點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年廣東省高二12月月考理科數(shù)學(xué) 題型:解答題

如圖,在各棱長(zhǎng)均為2的三棱柱ABC-ABC中,側(cè)面AACC⊥底面ABC,∠AAC=60°.

(Ⅰ)求側(cè)棱AA與平面ABC所成角的正弦值的大。

(Ⅱ)已知點(diǎn)D滿足,在直線AA上是否存在點(diǎn)P,使DP∥平面ABC?若存在,請(qǐng)確定點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案