分析 根據(jù)平面向量的坐標(biāo)運(yùn)算,利用$m\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,數(shù)量積為0,求出m的值.
解答 解:∵向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-l,2),
∴$m\overrightarrow a+\overrightarrow b$=(2m-1,3m+2)
$\overrightarrow a-2\overrightarrow b$=(4,-1)
又∵$m\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,
∴($m\overrightarrow a+\overrightarrow b$)•($\overrightarrow a-2\overrightarrow b$)=4(2m-1)-(3m+2)=5m-6=0,
解得m=$\frac{6}{5}$.
故答案為:$\frac{6}{5}$.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n(n+1) | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n(n+5)}{2}$ | D. | $\frac{n(n+7)}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |b|≤|ac| | B. | |b|≥$\sqrt{\frac{|a|+|c|}{2}}$ | C. | |b|≥$\sqrt{\frac{{{{|a|}^2}+{{|c|}^2}}}{2}}$ | D. | |b|≤$\frac{|a|+|c|}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com