在三棱錐O-ABC中,三條棱OA、OB、OC兩兩相互垂直,且OA>OB>OC,分別過OA、OB、OC作一個截面平分三棱錐的體積,截面面積依次為S1,S2,S3,則S1,S2,S3中的最小值是   
【答案】分析:取BC中點(diǎn)D,連接OD,AD,則平面OAD平分三棱錐的體積,即三角形OAD面積為S1,由此推導(dǎo)出S12=(OA2OB2+OA2OC2).同理可得S22=(OA2OB2+OB2OC2),S32=(OA2OC2+OB2OC2),由此能求出S1,S2,S3中的最小值.
解答:解:取BC中點(diǎn)D,連接OD,AD,則平面OAD平分三棱錐的體積,
即三角形OAD面積為S1,
在Rt△BOC中,OD是斜邊BC上的中線,∴OD=BC,
∵OA⊥OB,OA⊥OC,∴OA⊥平面BOC,
∵OD?平面BOC,
∴OA⊥OD,
∴S1=OA×OD,
即S12=OA2OD2=OA2BC2=OA2(OB2+OC2)=(OA2OB2+OA2OC2).
同理可得S22=(OA2OB2+OB2OC2),
S32=(OA2OC2+OB2OC2),
因?yàn)镺A>OB>OC
所以S12>S22>S32
所以S1,S2,S3中的最小值是S3
故答案為:S3
點(diǎn)評:本題考查棱錐中截面面積的計(jì)算,解題時要認(rèn)真審題,仔細(xì)解答,注意勾股定理的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△OAB中,∠O=90°,則 cos2A+cos2B=1.根據(jù)類比推理的方法,在三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分別是三個側(cè)面與底面所成的二面角,則
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,OA、OB、OC兩兩垂直,OC=1,OA=x,OB=y,x+y=4,當(dāng)三棱錐O-ABC的體積最大時,異面直線AB與OC的距離等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),點(diǎn)G是MN的中點(diǎn),則
OG
可用基底{
OA
,
OB,
OC
}
表示成:
OG
=
1
4
(
OA
+
OB
+
OC
)
1
4
(
OA
+
OB
+
OC
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給出下列命題,其中正確的命題是
①③④
①③④
(寫出所有正確命題的編號).
①非零向量
a
、
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為30°;
②已知非零向量
a
b
,則“
a
b
>0
”是“
a
b
的夾角為銳角”的充要條件;
③命題“在三棱錐O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若點(diǎn)P在△ABC所在的平面內(nèi),則x+y=3”的否命題為真命題;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,則△ABC為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案