【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點,且AC=2,點D為半徑OB的中點,連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)由題意推導(dǎo)出△BOC是正三角形,CD⊥OB,OP⊥CD,從而CD⊥平面PAB,即可得證;
(2)設(shè)點O到平面PBC的距離為d,由題意可得,,由,即可得解.
(1)證明:連接CD、OC,如圖:
∵AB=4,,AC⊥BC,∴,
∵OB=OC,∴△BOC是正三角形,
又D點是OB的中點,∴CD⊥OB,
又PO⊥平面ABC,∴OP⊥CD,
∵OP∩OB=O,∴CD⊥平面PAB,
∴PC在平面APB內(nèi)的射影是PD;
(2)由PA=4,可知,PB=PC=4,
∴,,
∴,
設(shè)點O到平面PBC的距離為d,
則,解得,
∴底面圓心O到平面PBC的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,PA平面ABC,ABAC,且PA=l,AB=AC=2,點D滿足,.
(1)當(dāng),求二面角P-BD-C的余弦值;
(2)若直線PC與平面PBD所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點,分別是曲線,上兩動點且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線的焦點,過點F的直線交拋物線于A,B兩點,其中A在x軸上方,O是坐標(biāo)原點,若,,則以AB為直徑的圓的標(biāo)準(zhǔn)方程為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓:,點,,點在圓上,.
(1)求圓的方程;
(2)直線與圓交于,兩點(點在軸上方),點是拋物線上的動點,點為的外心,求線段長度的最大值,并求出當(dāng)線段長度最大時,外接圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,石子是我們經(jīng)常見到的材料,比如在各種建筑工地或者建材市場上常常能看到堆積如山的石子,它的主要成分是碳酸鈣.某雕刻師計劃在底面邊長為2m、高為4m的正四棱柱形的石料中,雕出一個四棱錐和球M的組合體,其中O為正四棱柱的中心,當(dāng)球的半徑r取最大值時,該雕刻師需去除的石料約重___________kg.(最后結(jié)果保留整數(shù),其中,石料的密度,質(zhì)量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有7個球,其中紅色球2個(同色不加區(qū)分),白色,黃色,藍色,紫色,灰色球各1個,將它們排成一行,要求最左邊不排白色,2個紅色排一起,黃色和紅色不相鄰,則有________種不同的排法(用數(shù)字回答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天上有些恒星的亮度是會變化的,其中一種稱為造父(型)變星,本身體積會膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784年.
上圖為一造父變星的亮度隨時間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮?xí)r視星等,分別約是( )
A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語文和數(shù)學(xué)各自都必須上兩節(jié)而且兩節(jié)連上,而英語、物理、化學(xué)、生物最多上一節(jié),則不同的功課安排有________種情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com