如圖,在正三棱柱中,,分別為,的中點(diǎn).

1)求證:平面

2)求證:平面平面.

 

【答案】

1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

試題分析:(1)要證線面平行,需有線線平行.,分別為,的中點(diǎn),想到取的中點(diǎn);證就成為解題方向,這可利用平行四邊形來(lái)證明.在由線線平行證線面平行時(shí),需完整表示定理?xiàng)l件,尤其是線在面外這一條件;(2)要證面面垂直,需有線面垂直. 由正三棱柱性質(zhì)易得底面側(cè)面,從而側(cè)面,,因此有線面垂直:.在面面垂直與線面垂直的轉(zhuǎn)化過(guò)程中,要注意充分應(yīng)用幾何體及平面幾何中的垂直條件.

試題解析:(1)連于點(diǎn),中點(diǎn), ,

中點(diǎn),,

,四邊形是平行四邊形, 4

,又平面,平面平面. 7

2)由(1)知,中點(diǎn),所以,所以9

又因?yàn)?/span>底面,而底面,所以,

則由,得,而平面,且,

所以, 12

平面,所以平面平面. 14

考點(diǎn):線面平行及面面垂直的判定定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱中,AB=2,AA1=2由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過(guò)棱AA1到頂點(diǎn)C1的最短路線與棱AA1的交點(diǎn)記為M,求:
(1)該最短路線的長(zhǎng)及
A1MAM
的值.
(2)平面C1MB與平面ABC所成二面角(銳角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱中,底面△的邊長(zhǎng)為,的中點(diǎn),三棱柱的體積

(1)求該三棱柱的側(cè)面積;

(2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西南昌10所省高三第二次模擬沖刺理科數(shù)學(xué)試卷(二)(解析版) 題型:解答題

如圖,在正三棱柱中,,的中點(diǎn),是線段上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且.

(1)若,求證:;

(2)若直線與平面所成角的大小為,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三11月月考文科數(shù)學(xué)試卷 題型:填空題

如圖,在正三棱柱中,D為棱的中點(diǎn),若截面是面積為6的直角三角形,則此三棱柱的體積為         。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年西藏拉薩中學(xué)高三第七次月考考試?yán)砜茢?shù)學(xué) 題型:填空題

如圖,在正三棱柱中,.若二面角的大小為,則點(diǎn)到平面的距離為                 。  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案