(2011•重慶一模)已知一個(gè)圓的圓心在x軸的正半軸上,且經(jīng)過(guò)點(diǎn)(0,0),直線
3
x-y=0被該圓截得的弦長(zhǎng)為2,則該圓的方程是( 。
分析:根據(jù)一個(gè)圓的圓心在x軸的正半軸上,設(shè)出圓心坐標(biāo)為(a,0),且a大于0,半徑為r,表示出圓的標(biāo)準(zhǔn)方程,由圓經(jīng)過(guò)(0,0),把(0,0)代入所設(shè)的圓的方程,得到a=r,可得到圓心坐標(biāo)為(r,0),然后利用點(diǎn)到直線的距離公式表示出圓心到已知直線的距離d,由已知弦長(zhǎng)的一半,圓的半徑r以及d,利用勾股定理列出關(guān)于r的方程,求出方程的解可得到r的值,確定出圓心坐標(biāo)和半徑,進(jìn)而確定出圓的標(biāo)準(zhǔn)方程.
解答:解:由題意設(shè)圓心坐標(biāo)為(a,0)(a>0),圓的半徑為r,
∴圓的方程為(x-a)2+y2=r2(r>0),
又圓經(jīng)過(guò)(0,0),
∴a2=r2,即a=r,
∴圓心坐標(biāo)為(r,0),
∴圓心到直線
3
x-y=0的距離d=
3
r
2
,
又弦長(zhǎng)為2,即弦長(zhǎng)的一半為1,
∴r2=d2+12,即r2=
3
4
r2+1,
解得:r=2,
∴圓心坐標(biāo)為(2,0),半徑r=2,
則圓的標(biāo)準(zhǔn)方程為:(x-2)2+y2=4,即x2+y2-4x=0.
故選B
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,勾股定理,以及垂徑定理,當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)若拋物線的焦點(diǎn)坐標(biāo)為(2,0),則拋物線的標(biāo)準(zhǔn)方程是
y2=8x
y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)已知cosα=
2
3
,則cos(π+2α)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)在等比數(shù)列{an}中,已知a2=8,a5=1.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=a2n,求數(shù)列{bn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)我們知道:人們對(duì)聲音有不同的感覺(jué),這與它的強(qiáng)度有關(guān)系,聲音的強(qiáng)度用I(單位:W/m2)表示,但在實(shí)際測(cè)量時(shí),常用聲音的強(qiáng)度水平L1(單位:分貝)表示,它們滿(mǎn)足公式:L1=10•lg
II0
(L1≥0,其中I0=1×10-12W/m2),I0是人們能聽(tīng)到的最小強(qiáng)度,是聽(tīng)覺(jué)的開(kāi)始.請(qǐng)回答以下問(wèn)題:
(Ⅰ)樹(shù)葉沙沙聲的強(qiáng)度為1×10-12W/m2),耳語(yǔ)的強(qiáng)度為1×10-10W/m2),無(wú)線電廣播的強(qiáng)度為1×10-8W/m2),試分別求出它們的強(qiáng)度水平;
(Ⅱ)某小區(qū)規(guī)定:小區(qū)內(nèi)公共場(chǎng)所的聲音的強(qiáng)度水平必須保持在50分貝以下(不含50分貝),試求聲音強(qiáng)度I的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)已知函數(shù)f(x)=
x+ax+1
(a為常數(shù)).
(I)若a=0,解不等式f(x)>2;
(II)解關(guān)于x的不等式f(x-1)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案