(本小題滿分10分)已知命題p:函數(shù)在R上是減函數(shù);命題q:在平面直角坐標(biāo)系中,點(diǎn)在直線的左下方。若為假,為真,求實(shí)數(shù)的取值范圍
(-3,4)
【解析】
試題分析:解:f ′(x)=3ax2+6x-1,∵函數(shù)f(x)在R上是減函數(shù),
∴f ′(x)≤0即3ax2+6x-1≤0(x∈R).
(1)當(dāng)a=0時(shí),f ′(x)≤0,對(duì)x∈R不恒成立,故a≠0.
(2)當(dāng)a≠0時(shí),要使3ax2+6x-1≤0對(duì)x∈R恒成立,
應(yīng)滿足,即,∴p:a≤-3. …………5分
由在平面直角坐標(biāo)系中,點(diǎn)在直線的左下方,
得∴q:, …………7分
:a≤-3;:
綜上所述,a的取值范圍是(-3,4).…………10分
考點(diǎn):本試題考查了命題的真值,函數(shù)性質(zhì)。
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用函數(shù)單調(diào)性和二元一次不等式的表示的區(qū)域可知a的范圍。細(xì)節(jié)是理解且為真,或?yàn)榧,得到必有一真一假,得到參?shù)的范圍,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com