甲、乙、丙、丁四人參加奧運會射擊項目選拔賽,四人的平均成績和方差如下表所示:
平均環(huán)數(shù)8.68.98.98.2
方差s23.53.52.15.6
從這四個人中選擇一人參加奧運會射擊項目比賽,最佳人選是( )
A.甲
B.乙
C.丙
D.丁
【答案】分析:甲,乙,丙,丁四個人中乙和丙的平均數(shù)最大且相等,甲,乙,丙,丁四個人中丙的方差最小,說明丙的成績最穩(wěn)定,得到丙是最佳人選.
解答:解:∵甲,乙,丙,丁四個人中乙和丙的平均數(shù)最大且相等,
甲,乙,丙,丁四個人中丙的方差最小,
說明丙的成績最穩(wěn)定,
∴綜合平均數(shù)和方差兩個方面說明丙成績即高又穩(wěn)定,
∴丙是最佳人選,
故選C.
點評:本題考查隨機抽樣和一般估計總體的實際應用,考查對于平均數(shù)和方差的實際應用,對于幾組數(shù)據(jù),方差越小數(shù)據(jù)越穩(wěn)定,這是經(jīng)?疾榈囊环N題目類型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙、丙、丁四人參加奧運會射擊項目選拔賽,四人的平均成績和方差如下表所示:
平均環(huán)數(shù)
.
x
8.6 8.9 8.9 8.2
方差s2 3.5 3.5 2.1 5.6
從這四個人中選擇一人參加奧運會射擊項目比賽,最佳人選是(  )
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)某電視臺有A、B兩種智力闖關游戲,甲、乙、丙、丁四人參加,其中甲乙兩人各自獨立進行游戲A,丙丁兩人各自獨立進行游戲B.已知甲、乙兩人各自闖關成功的概率均為
1
2
,丙、丁兩人各自闖關成功的概率均為
2
3

(I )求游戲A被闖關成功的人數(shù)多于游戲B被闖關成功的人數(shù)的概率;
(II) 記游戲A、B被闖關成功的總?cè)藬?shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙、丁四人參加一百米決賽.小張認為,冠軍不是甲,就是乙.小王堅信冠軍絕不是丙.小李則認為,甲、乙都不可能取得冠軍.比賽結(jié)束后,人們發(fā)現(xiàn)這三個人中只有一個人的看法是正確的.請問:誰是一百米決賽的冠軍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)某電視臺有A、B兩種智力闖關游戲,甲、乙、丙、丁四人參加,其中甲乙兩人各自獨立進行游戲A,丙丁兩人各自獨立進行游戲B.已知甲、乙兩人各自闖關成功的概率均為
1
2
,丙、丁兩人各自闖關成功的概率均為
2
3

(I)求游戲A被闖關成功的人數(shù)多于游戲B被闖關成功的人數(shù)的概率;
(II)求游戲A、B被闖關成功的總?cè)藬?shù)為3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州一模)甲、乙、丙、丁四人參加國際奧林匹克數(shù)學競賽選拔賽,四人的平均成績和方差如下表:
平均成績
.
x
86 89 89 85
方差S2 2.1 3.5 2.1 5.6
從這四人中選擇一人參加國際奧林匹克數(shù)學競賽,最佳人選是( 。

查看答案和解析>>

同步練習冊答案