【題目】已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),an+1= 若a6=1,則m所有可能的取值的個數(shù)為 .
【答案】3
【解析】解:∵a6=1,
∴a5必為偶數(shù),∴a6= =1,解得a5=2.
當(dāng)a4為偶數(shù)時,a5= ,解得a4=4;當(dāng)a4為奇數(shù)時,a5=3a4+1=2,解得a4= ,舍去.
∴a4=4.
當(dāng)a3為偶數(shù)時,a4= =4,解得a3=8;當(dāng)a3為奇數(shù)時,a4=3a3+1=4,解得a3=1.
當(dāng)a3=8時,當(dāng)a2為偶數(shù)時,a3= ,解得a2=16;當(dāng)a2為奇數(shù)時,a3=3a2+1=8,解得a2= ,舍去.
當(dāng)a3=1時,當(dāng)a2為偶數(shù)時,a3= =1,解得a2=2;當(dāng)a2為奇數(shù)時,a3=3a2+1=1,解得a2=0,舍去.
當(dāng)a2=16時,當(dāng)a1為偶數(shù)時,a2= =16,解得a1=32=m;當(dāng)a1為奇數(shù)時,a2=3a1+1=16,解得a1=5=m.
當(dāng)a2=2時,當(dāng)a1為偶數(shù)時,a2= =2,解得a1=4=m;當(dāng)a1為奇數(shù)時,a2=3a1+1=2,解得a1= ,舍去.
綜上可得m=4,5,32.
所以答案是:3.
【考點精析】認真審題,首先需要了解數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x∈R,都有ax2>﹣ax﹣1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y﹣4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一枚骰子,當(dāng)它每次落地時,向上一面的點數(shù)稱為該次拋擲的點數(shù),可隨機出現(xiàn)1到6點中的任一個結(jié)果.連續(xù)拋擲兩次,第一次拋擲的點數(shù)記為a,第二次拋擲的點數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為( )
A.90°
B.45°
C.60°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)x的一元二次方程9x2+6ax﹣b2+4=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB;
(2)試問:當(dāng)點E在何處時,四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( )
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC= .
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P﹣ABC的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com