已知函數(shù)
(1)求函數(shù)的最小正周期.
(2)當時,求函數(shù)的單調(diào)減區(qū)間.

(1);(2)

解析試題分析:(1)=

(2)當時,
,時,函數(shù)單調(diào)遞減
解得:
∴函數(shù)的單調(diào)減區(qū)間為
考點:本題考查了三角函數(shù)的性質(zhì)
點評:三角函數(shù)考試大致可分為四類問題(1)與三角函數(shù)單調(diào)性有關(guān)的問題;(2)與三角函數(shù)圖象有關(guān)的問題;(3)應用同角變換和誘導公式,求三角函數(shù)值及化簡和等式證明的問題;(4)與周期有關(guān)的問題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)若在區(qū)間上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,函數(shù)的圖象在點處的切線平行于軸.
(1)確定的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處的切線方程為
(1)求函數(shù)的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù),曲線在點處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點?(說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意 恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)設,其中為正實數(shù)。
(1)當時,求的極值點;
(2)若為R上的單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

同步練習冊答案