設函數(shù).
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數(shù)的單調區(qū)間與極值點.

(1)a=4,b=24
(2) 時,,函數(shù)上單調遞增,
此時函數(shù)沒有極值點
時,由
時,,函數(shù)單調遞增,
時,,函數(shù)單調遞減,
時,,函數(shù)單調遞增,
∴此時的極大值點,
的極小值點

解析試題分析:解:(Ⅰ),         2分
∵曲線在點處與直線相切,
       6分
(Ⅱ)∵,
時,,函數(shù)上單調遞增,
此時函數(shù)沒有極值點            8分
時,由,       9分
時,,函數(shù)單調遞增,      10分
時,,函數(shù)單調遞減,      11分
時,,函數(shù)單調遞增,         12分
∴此時的極大值點,        13分
的極小值點            14分
考點:導數(shù)的幾何意義和函數(shù)的極值
點評:主要是考查了運用導數(shù)求解切線方程和極值問題,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)若處取得極值,求的值;
(2)求的單調區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分) 已知為實數(shù),,
(1)若,求的單調區(qū)間;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
定義在上的函數(shù)滿足:①對任意都有
 在上是單調遞增函數(shù);③.
(Ⅰ)求的值;
(Ⅱ)證明為奇函數(shù);
(Ⅲ)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期.
(2)當時,求函數(shù)的單調減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù).
(1) 若不等式的解集為,求實數(shù)的值;
(2) 在(1)的條件下,使能成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案