,則方程有實(shí)根的概率為        (    )

       A.          B.                 C.                 D.

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高考模擬預(yù)測數(shù)學(xué)文試卷(解析版) 題型:解答題

一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.

(I)從袋中隨機(jī)抽取一個(gè)球,將其編號(hào)記為,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號(hào)記為.求關(guān)于的一元二次方程有實(shí)根的概率;

(II)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為n.若以 作為點(diǎn)P的坐標(biāo),求點(diǎn)P落在區(qū)域內(nèi)的概率.

【解析】第一問利用古典概型概率求解所有的基本事件數(shù)共12種,然后利用方程有實(shí)根,則滿足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發(fā)生的基本事件數(shù)為6種,從而得到概率。第二問中,利用所有的基本事件數(shù)為16種。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。在求解滿足的基本事件數(shù)為(1,1) (2,1)  (2,2) (3,1) 共4種,結(jié)合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12種。

有實(shí)根, ∴△=4a2-4b2≥0,即a2≥b2

記“有實(shí)根”為事件A,則A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6種。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。

記“點(diǎn)P落在區(qū)域內(nèi)”為事件B,則B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4種!郟B.=

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:

①命題“x∈R,使得x2+1>3x”的否定是“x∈R,都有x2+1≤3x”;

②“m=-2”是“直線(m+2)xmy+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不

充分條件;

③將一枚骰子拋擲兩次,若先后出現(xiàn)的點(diǎn)數(shù)分別為,則方程有實(shí)根的概

率為;w*w*w*k*s*5*u*c*o*m

④過點(diǎn)(,1)且與函數(shù)y=圖象相切的直線方程是4xy-3=0.

其中所有正確說法的序號(hào)是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案