精英家教網 > 高中數學 > 題目詳情
若函數f(x)是奇函數,且當x∈(-∞,0)時f(x)為增函數,f(-3)=0,又g(x)=x2+x+1,則不等式f(x)g(x)<0的解集為______.
∵x∈(-∞,0)時f(x)為增函數,f(-3)=0,
∴當x∈(-∞,-3)時,f(x)<0,當x∈(-3,0)時,f(x)>0,
又∵函數f(x)是奇函數,
∴當x∈(0,3)時,f(x)<0,當x∈(-3,+∞)時,f(x)>0;
又∵g(x)=x2+x+1>0恒成立,
∴不等式f(x)g(x)<0的解集為(-∞,-3)∪(0,3)
故答案為:(-∞,-3)∪(0,3)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數;
(2)求證:函數f(x)是R上的減函數;
(3)若定義在(-2,2)上的函數f(x)滿足f(-m)+f(1-m)<0,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•遂寧二模)設函數f(x)的定義域為D,若存在非零實數,使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調函數,現(xiàn)給出下列命題:
①函數f(x)=(
12
)x
為R上的1高調函數;
②函數f (x)=sin 2x為R上的高調函數;
③如果定義域是[-1,+∞)的函數f(x)=x2為[-1,+∞)上的m高調函數,那么實數m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數,當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調函數,那么實數a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數;
(2)求證:函數f(x)是R上的減函數;
(3)若定義在(-2,2)上的函數f(x)滿足f(-m)+f(1-m)<0,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數;
(2)求證:函數f(x)是R上的減函數;
(3)若定義在(-2,2)上的函數f(x)滿足f(-m)+f(1-m)<0,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年四川省遂寧市高考數學二模試卷(理科)(解析版) 題型:解答題

設函數f(x)的定義域為D,若存在非零實數,使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調函數,現(xiàn)給出下列命題:
①函數為R上的1高調函數;
②函數f (x)=sin 2x為R上的高調函數;
③如果定義域是[-1,+∞)的函數f(x)=x2為[-1,+∞)上的m高調函數,那么實數m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數,當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調函數,那么實數a的取值范圍是[一1,1].
其中正確的命題是     (寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案