若復(fù)數(shù)zl=-1+2i,z2=-1-i,其中i是虛數(shù)單位,則(zl+z2)i的虛部為( 。
A、-2iB、-2C、2iD、2
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的四則運(yùn)算先化簡(jiǎn)復(fù)數(shù),即可得到結(jié)論.
解答: 解:∵復(fù)數(shù)zl=-1+2i,z2=-1-i,
∴(zl+z2)i=(-2+i)i=-2i+i2=-1-2i,
故(zl+z2)i的虛部為-2,
故選:B
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的有關(guān)概念,利用復(fù)數(shù)的四則運(yùn)算先進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a3+a4+a5+a6+a7=45,則S9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sinx+
1
2
cosx在x0處取得最大值,則x0可能是( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“k=-1”是“兩直線kx+3y-2=0和(2-k)x+y-7=0互相垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊過點(diǎn)P(x,-3)且cosα=-
3
2
,則x的值為( 。
A、±3
3
B、3
3
C、-3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)協(xié)會(huì)是我們學(xué)校的一個(gè)研究型社團(tuán),深受同學(xué)們的喜愛,在2013年9月27、28日下午的社團(tuán)招新活動(dòng)中,較多的同學(xué)加入了數(shù)學(xué)協(xié)會(huì).設(shè)命題p是“甲同學(xué)加入了數(shù)學(xué)協(xié)會(huì)”,命題q是“乙同學(xué)加入了數(shù)學(xué)協(xié)會(huì)”,則命題“甲、乙至少有一位同學(xué)沒有加入數(shù)學(xué)協(xié)會(huì)”可表示為( 。
A、¬p∨¬qB、p∨q
C、p∨¬qD、¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,tanA=-
5
12
,那么cosA等于( 。
A、
12
13
B、
5
13
C、-
12
13
D、-
5
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程(a-6)x2-(a+2)x-1=0(a∈R),求方程至少有一負(fù)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知算法框圖如下:
(1)若算法計(jì)算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的值,請(qǐng)將菱形框(條件框)處的條件寫出來.
(2)若菱形框(條件框)處的條件為“k≥2014”,則輸出的結(jié)果為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案